STRUTTURA PREPOSTA AL MONITORAGGIO | ANNO DI ESERCIZIO 2019-2020 | RELAZIONE SEMESTRALE N.2

Accordo Quadro 2017-2022 MiSE, Regione Basilicata, INGV, ENI

PROGETTO DI MONITORAGGIO CONCESSIONE VAL D'AGRI

Responsabili di Progetto: Thomas Braun e Stefania Danesi Autori: T. Braun, S. Danesi, L. Anderlini, M. Errico, D. Famiani, M. Polcari e P. Zerbinato Redazione: M. Errico

EXECUTIVE SUMMARY UTTOBRE 2019 - APRILE 2020 DDEMESSA	6 12
IL DROCETTO DI MONITORACCIO DELLA CONCESSIONE VAL D'ACRE CRONOLOCIA E CONTECTO	13
IL PROGETTO DI MIONITORAGGIO DELLA CONCESSIONE VAL D'AGRI. CRONOLOGIA E CONTESTO	10
RELAZIONE TRA SUGGETTI CUINVULTI	1.0
IL GENTRO DI MONITORAGGIO PER IL SOTTOSOGIO. ORGANIZZAZIONE E CONTESTO INTERNO ALL'INGV	14
	21
	21
	21
DATI SISMULUGICI Dati Clodal Navication Satellite Sveteme INSAD	22
	22
	22
	23
STRUMENTAZIONE DELLA RETE SISMICA ENT	23
CENTRO DI ACQUISIZIONE ED ELABORAZIONE DATI (ØING V BOLOGNA	24
ACQUISIZIONE DATI SISMICI	25
Schema di acquisizione	25
	20
	27
	27
LA RETE DI MONITORAGGIO GEODETICO ENI	29
IUNITURAGGIU E ANALISI DATI	33
LOG BOOK	33
DATI SISMOLOGICI	34
Commenti relativi allo incertazza della lacalizzazioni incerettali di sventi signici lacali a e	35
commenti relativi alle incertezze delle localizzazioni ipocentrali di eventi sismici locali e a	11e 26
Implicazioni per il monitoraggio sistilico Commenti relativi ai parametri di soglia definiti dagli II G applicati alla sismicità registrata in $V/$, 36 , 36
Sismicità locale 10/2019 - 03/2020 localizzata da ENI	43
Analisi dati pregressi con SC3	48
Dati GPS	51
Analisi della qualità del dato	51
Elaborazione del dato	52
Risultati - Serie temporali di spostamento	55
Campo di velocità	59
Considerazioni finali	62
DATI INSAR	63
Introduzione	63
Dataset	63
Risultati	64
Confronto tra elaborazioni INGV e quello fornito dal concessionario	68
JOMUNICAZIONE E DISSEMINAZIONE	20
	71
REDAZIONE MANSIONARI E PROTOCOLLI OPERATIVI	/1
ANALISI DELLE DEFORMAZIONI DEL SUOLO	/1
POPOLAMENTO E PUBBLICAZIONE ONLINE DEL SITO WEB	/1
EVOLUZIONE DELL'INFRASTRUTTURA INFORMATICA	72
LOSSARIO	73
JIBLIOGRAFIA	74
LENCO DELLE FIGURE	76
ELENCO DELLE TABELLE	79

Accordo Quadro 2017-2022 MiSE, Regione Basilicata, INGV, ENI

PROGETTO DI MONITORAGGIO CONCESSIONE VAL D'AGRI Relazione semestrale n.2

Thomas Braun ^{1,3}, Stefania Danesi ², Letizia Anderlini ², Maddalena Errico ², Daniela Famiani ³, Marco Polcari ⁴, Paolo Zerbinato ²

¹ INGV, Osservatorio Sismologico Arezzo, Italia; ² INGV, Sezione di Bologna, Italia;

³ INGV, Sezione di Roma 1, Italia; ⁴ INGV Osservatorio Nazionale Terremoti, Italia.

25/04/2020

EXECUTIVE SUMMARY OTTOBRE 2019 - APRILE 2020

Report delle attività di avanzamento del Progetto di Monitoraggio in conformità agli Indirizzi e Linee Guida per il Monitoraggio della sismicità delle deformazioni del Suolo e delle pressioni di poro nell'ambito delle attività antropiche (ILG) nell'area di concessione della Val d'Agri.

Management

I Responsabili della Sperimentazione hanno coordinato le attività del Progetto sia internamente all'INGV che esternamente nei rapporti nazionali e internazionali:

- supporto alla Dirigenza dell'Ente per l'organizzazione del Centro di Monitoraggio del Sottosuolo;
- stesura dei protocolli operativi e dei mansionari;
- stesura del piano assunzionale (definizione di profili professionali, bandi di concorso);
- definizione, pianificazione, gestione piano finanziario;
- partecipazione attiva alle riunioni del Comitato organizzate presso il MiSE;
- Partecipazione a Workshops e Convegni e pubblicazioni su riviste internazionali *peer-review*.

Trasferimento Dati Pregressi da ENI

Come stabilito nel Protocollo di Trasmissione Dati, il volume completo di informazioni viene regolarmente trasmesso da ENI a INGV e i gruppi di analisi lavorano in modo collaborativo. A causa dello stato di emergenza COVID-19, il trasferimento del volume completo di dati come è stato concordato non è stato finora possibile, benché siano state pianificate modalità e dettagli; analogamente, il *survey* a tutte le stazioni Eni, sismiche e cGPS, programmato per la primavera del 2020 in Val d'Agri è stata spostata a data da destinarsi.

Acquisizione e archiviazione dati

Il Centro di Acquisizione Dati (CAD-BO) presso l'INGV di Bologna acquisisce attualmente in tempo reale i segnali di tutte le stazioni della rete microsismi ENI, delle stazioni della Rete Sismica Nazionale e di alcune stazioni di reti pubbliche in un raggio di circa 50 km dal dominio di monitoraggio. I dati cGPS vengono trasmessi e acquisiti periodicamente in modo regolare.

Monitoraggio sismico

La rete sismica ENI installata in Val d'Agri è attualmente composta da 16 stazioni a 6 canali (3 velocimetri e 3 accelerometri) e una stazione in pozzo (PADH). L'acquisizione in tempo reale e l'archiviazione dei dati viene realizzata dalla ditta SolGeo (Bergamo). I *datastream* vengono poi inoltrati alle sale di controllo dell'ENI (San Donato Milanese) e del CMS-INGV (Bologna).

Come software sismologico è stato installato SeisComP3 (SC3), che gestisce:

- acquisizione dei *datastream* in tempo reale;
- analisi in automatico di dati (parametri ipocentrali, Magnitudo) in tempo quasi reale;
- rielaborazione manuale (revisione parametri, calcolo meccanismo focale, PGV, PGA);
- reportistica e la disseminazione dei bollettini su WEB.

A seguito dei corsi di formazione per SC3, le condizioni di acquisizione dati del CAD possono essere definite sufficientemente stabili, tanto che a partire dal 1 Marzo 2020 la SPM ha avviato una fase di monitoraggio sismico pre-operativo. Il sistema è strutturato affinché gli operatori in turno di monitoraggio possano connettersi da postazioni remote, distribuite sul territorio nazionale. Questa configurazione si è rivelata particolarmente efficace durante l'emergenza COVID-19 perché ha reso possibile il monitoraggio pre-operativo via VPN da diverse sedi INGV (Roma, Arezzo, Milano, L'Aquila) in collegamento verso CAD-BO.

Sono state effettuate alcune analisi di dettaglio relative ad eventuali criticità degli ILG (Braun et al, 2020; Garcia-Aristizabal et al., 2020). In questo contesto è importante ribadire che sia le coordinate ipocentrali che la Magnitudo non rappresentano parametri misurati, ma sono valori calcolati con procedure affette da errori epistemici, quindi non forniscono una soluzione univoca. Nell'applicazione del sistema a semaforo, gli ILG richiedono il calcolo di tali parametri ai fini di classificare il livello di allerta. Considerando che tale classificazione influisce sulla gestione della concessione e le azioni da intraprendere, il risultato del nostro studio dimostra quanto sia indispensabile considerare le incertezze delle soluzioni ottenute.

Per quanto riguarda la sismicità registrata in Val d'Agri, nell'ultimo semestre sono stati localizzati 4 ipocentri di magnitudo ML≥1.5 all'interno del DI. Il terremoto più significativo del 4 Gennaio 2020 ha raggiunto ML=2.5 localizzato al bordo occidentale del DI nel comune di Marsico Vetere. Considerando che gli epicentri dei quattro eventi di livello "giallo" e "arancione" distano più di 25 km dal pozzo di reiniezione CM2, tali eventi non sono stati oggetto di segnalazione al Comitato.

Data	Ora UTC	Lat. N (°)	Lon. E (°)	Prof. (km)	Err. Prof. (km)	RMS (s)	PGV	PGA	Epicentro
15/10/19	05:52:14	40°29.15	15°47.48	6.2	0.23	1.7	1.03e-04	4.2e-03	Marsico Nuovo
20/10/19	17:07:47	40°23.05	15°40.80	2.2	0.18	1.8	2.6e-05	1.01e-03	Sala Consilina
04/01/20	14:52:50	40°20.02	15°46.61	3.0	0.14	2.5	5.33e.04	2.45e.02	Marsico Vetere
24/04/20	19:12:24	40°20.10	15°46.02	1.6	0.27	1.6	5.02e.05	1.65e.03	Marsico Vetere

Tabella S1. Eventi sismici localizzati in Val d'Agri nel periodo dal 01/10/2019 al 31/03/2020 (secondo bollettino ENI) con M≥1.5 e ipocentro all'interno del DI.

FiguraS1.EpicentrilocalizzatiinVAdalconcessionariodallaretesismicaENI:icerchiML<2.2)</td>egliasterischi(ML \ge 2.2)indicanogliepicentrinelperiodo200109/2019(grigio)e10/2019-03/2020(giallo).

Monitoraggio deformazioni del suolo - dati cGPS

Dopo una fase di pre-processamento e di valutazione della qualità, i dati RINEX GPS delle 5 stazioni in Val d'Agri fornite da ENI sono stati elaborati all'interno di una soluzione geodetica più ampia a scala euro-Mediterranea, utilizzando i dati provenienti da più di 3000 stazioni GPS/GNSS attive, presenti sul territorio italiano ed europeo e gestite da enti di ricerca pubblici (es. INGV, Università), enti locali (es. regioni) e privati (es. Leica-Geosystem, GeoTop).

Le stazioni installate da ENI presentano una buona continuità del dato e valori dei parametri MP1 e MP2, rappresentativi di disturbi da *multipath*, entro gli intervalli che indicano stazioni di buona qualità (Figura 27). Solo per una stazione, TLMA, i valori di MP1 e MP2 sono leggermente superiori ai valori di riferimento facendo supporre la presenza di elementi riflettenti o di disturbo troppo prossimi allo strumento. Inoltre risulta necessario far presente che, nonostante i valori di MP1 e MP2 per VIG3 siano entro i limiti, il loro progressivo aumento negli anni fa sospettare la presenza di un fattore di disturbo in costante aumento come la presenza di vegetazione, oppure un deterioramento della strumentazione. A questo scopo sono necessarie ulteriori informazioni sulla configurazione dei siti di installazione per tutte le stazioni analizzate fornendo strumenti utili nella valutazione di qualità del dato.

Le serie temporali di spostamento ottenute per le stazioni analizzate non mostrano particolari anomalie rispetto a un modello standard che comprende un trend lineare e delle componenti stagionali. Le stime di velocità orizzontali e verticali, per le stazioni MAE1 e VIG3 che hanno un intervallo temporale sufficiente di dati, mostrano delle differenze significative nonostante la relativa vicinanza (6 km). Si può comunque affermare che MAE1, trovandosi in linea con le velocità ottenute dalle stazioni circostanti e avendo valori di MP1 e MP2 simili a quelli delle migliori stazioni GPS permanenti analizzate all'INGV, sia una stazione di ottima qualità dal punto di vista della ripetibilità e della continuità del dato. VIG3 invece mostra una velocità che si discosta molto dalle velocità delle stazioni GPS circostanti e valori di MP1 e MP2 in progressivo aumento nel tempo, per cui l'affidabilità di questo sito deve essere approfondita.

	VE (mm/anno)	VN (mm/anno)	S_VE (mm/anno)	S_VN (mm/anno)	Vup (mm/anno)	S_Vup (mm/anno)
MAE1	22.294	18.850	0.238	0.231	0.643	1.804
VIG3	23.556	16.315	0.245	0.305	-4.215	1.355

Tabella S2. Velocità di spostamento, e relative incertezze, delle stazioni MAE1 e VIG3 (in mm/anno). In particolare VE, VN e Vup indicano le velocità nelle componenti est, nord e verticale, rispettivamente, nel sistema di riferimento IGS14 e S_VE, S_VN e S_Vup le relative incertezze.

Figura S2. Campo di velocità orizzontale (frecce), nel sistema di riferimento globale IGS14 (pannello A) e rispetto alla placca Eurasiatica (pannello B), e verticale (cerchi colorati). Le stazioni ENI con più di 2.5 anni di dati (MAE1 e VIG3) sono evidenziate con la sigla in rosso. Le ellissi d'errore per le componenti orizzontali sono al livello di confidenza del 95%. Si faccia attenzione alla diversa scala per le velocità orizzontali nei due pannelli.

Monitoraggio deformazioni del suolo - dati InSar

L'INGV si è avvalso dell'utilizzo dei prodotti forniti dalle missioni Sentinel-1 per l'analisi InSAR delle deformazioni del suolo in Val d'Agri nell'intervallo temporale Ottobre 2014 - Dicembre 2019. I risultati del processamento sono stati confrontati quelli mostrati nella relazione tecnica di E-Geos/CNIT (fornita dal Concessionario).

L'analisi InSAR ad una scala tale da coprire l'intera zona di concessione non ha mostrato significativi trend deformativi benché la copertura del segnale in corrispondenza di alcuni pozzi non sia ottimale a causa di fenomeni di decorrelazione temporale.

Riducendo la scala di indagine, è possibile rilevare alcuni segnali deformativi molto localizzati, prevalentemente dovuti a fenomeni franosi già noti. In questo report sono mostrati i risultati in 3 aree individuate nei pressi dei comuni di Montemurro, Corleto Perticara e Stigliano.

Figura S3. Mappe di velocità di deformazione InSAR stimate lungo la LoS. Il cerchio bianco evidenzia le aree in deformazione individuate nei pressi dei comuni di Montemurro (A), Corleto Perticara (B) e Stigliano (C), mentre le frecce indicano approssimativamente la direzione di scivolamento.

Il comune di Montemurro è interessato da un fenomeno franoso approssimativamente in direzione SE-NW, individuato e mostrato anche nella relazione tecnica di Egeos/CNIT.

Coerentemente con la geometria di acquisizione ascendente e la direzione del movimento del corpo di frana, in avvicinamento al sensore, il segnale SAR risulta positivo in LoS con velocità di picco di circa 5 mm/anno.

Per ciò che concerne i comuni di Corleto Perticara e Stigliano, essi sono entrambi situati in corrispondenza di cime montuose ed interessati da significativi fenomeni franosi in direzione quasi puramente W-E per Corleto Perticara e

approssimativamente SW-NE, che si traduce per entrambi in un segnale negativo nell'analisi InSAR.

Come emerge dalle mappe di velocità, le velocità di scivolamento dei corpi di frana raggiungono picchi di circa 1 cm/anno per Corleto Perticara e 2.5 cm/anno per Stigliano, interessando, in quest'ultimo caso, anche una parte del territorio comunale.

Nonostante l'utilizzo di tecniche differenti e analisi completamente indipendenti, il confronto tra i risultati INGV e ENI in termini di trend e serie storiche di deformazione del terreno hanno mostrato risultati consistenti tra loro sia nell'analisi su larga scala che su piccola scala. L'analisi InSAR effettuata da INGV ha di fatto confermato la sostanziale mancanza di deformazioni del suolo indotte dalle attività di coltivazione di idrocarburi nella concessione di Val d'Agri, documentata nella relazione del concessionario. L'analisi su piccola scala ha permesso di rilevare alcuni fenomeni di natura franosa nelle aree di Montemurro, Corleto Perticara e Stigliano, già note e comunque chiaramente indipendenti dalle attività estrattive. Il trend deformativo rilevato nei pressi del comune di Montemurro è sostanzialmente in accordo con quanto mostrato nel report del concessionario nelle cui serie temporali appare maggiormente filtrata la componente stagionale.

Premessa

Il Progetto di Monitoraggio della Concessione Val d'Agri: cronologia e contesto di relazione tra soggetti coinvolti

La presente relazione intende descrivere le attività di avanzamento del Progetto di Monitoraggio che l'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è designato a svolgere in conformità agli *Indirizzi e Linee Guida per il Monitoraggio della sismicità delle deformazioni del Suolo e delle pressioni di poro nell'ambito delle attività antropiche* (ILG) nell'area di concessione della Val d'Agri.

Per completezza si ripercorre la cronologia essenziale :

- In data 25/01/2017 è stato sottoscritto l'Accordo Quadro (AQ Rep n. 28) tra il Ministero dello Sviluppo Economico (MiSE), Regione Basilicata (RB) e INGV nel quale INGV viene nominato Struttura Preposta al Monitoraggio (SPM) da intendersi come da ILG. Il suddetto AQ veniva firmato da ENI S.p.A. per accettazione.
- In data 26/05/2017 si è tenuta la riunione di insediamento del Comitato presso il MiSE, presenti i rappresentanti di MiSE, RB, INGV ed ENI.
- In data 16/06/2017 INGV ha trasmesso ai membri del Comitato il Documento Tecnico Allegato 1 (Allegato_DTA1 PGU n. 7696) che definisce le modalità di esecuzione del Progetto di Monitoraggio e sulla base del quale viene definita una valutazione economica.
- In data 29/11/2017 la Commissione per gli Idrocarburi e le Risorse Minerarie (CIRM) del MiSE ha approvato la valutazione economica redatta da INGV in qualità di SPM (prot. MISE 0030381 del 22/12/2017).
- In data 06/12/2017, con DGR n. 1330, RB ha approvato l'Addendum al suddetto AQ di cui diventa parte integrante.
- In data 27/06/2018 il Comitato ha approvato e sottoscritto il Regolamento di Funzionamento del Comitato e il Protocollo di Trasmissione Dati.
- In data 8/11/2018 la RB ha trasmesso il Protocollo d'Intesa che regola i rapporti tra RB e INGV in relazione al trasferimento di risorse finanziarie previste per l'attuazione dell'AQ, sottoscritto e repertoriato al n. REP. 886.
- In data 26/04/2019, in concomitanza con la data del primo trasferimento di fondi da RB a INGV, in accordo con quanto concordato in seno al Comitato in data 27/06/2018, ha formalmente inizio la sperimentazione.
- In data 30/01/2020 con nota di Prot. n. U0002136 il MiSE ha espresso parere favorevole alla proroga dell'Accordo Quadro, ritenendo altresì opportuno

estenderla fino al 25/04/2022 per assicurare continuità alle necessarie attività di monitoraggio.

 In data 30/03/2020 con nota di Prot. n. INGV 0003997, INGV ha recepito la proroga dell'Accordo Quadro fino al 25/04/2022.

Il Centro di Monitoraggio per il Sottosuolo: organizzazione e contesto interno all'INGV

Le procedure di monitoraggio permanente da adottarsi in ottemperanza alle

direttive espresse negli ILG per il dominio della concessione Val d'Agri, così come per tutte le aree di concessione per le quali INGV è stato nominato SPM, si attuano nell'ambito operatività del Centro di di delle attività di Monitoraggio Sottosuolo (CMS), struttura di cui l'INGV si è dotato con approvazione del CdA tramite le Delibere 359/2017 e 428/2017.

Il CMS è la struttura dedicata alla raccolta, analisi, interpretazione e modellazione di dati relativi alle aree del territorio nazionale interessate da attività antropiche di sfruttamento di georisorse o legate ad altri rischi antropogenici.

In conformità con gli Indirizzi e Linee Guida ILG messi a punto dal Gruppo di lavoro della Commissione per gli Idrocarburi e le Risorse Minerarie (CIRM) del MiSE, il CMS opera attraverso protocolli operativi formulati secondo la miglior scienza ed esperienza e sottoposti all'approvazione del CdA dell'INGV.

Limitatamente alle aree di competenza per le quali l'INGV sia stato nominato Struttura Preposta al Monitoraggio, il CMS svolge le seguenti attività:

- 1. Monitoraggio della sismicità, deformazioni del suolo e delle pressioni di poro.
- 2. Stesura di linee guida, mansionari e protocolli interni per il monitoraggio.
- 3. Formazione del personale coinvolto nelle attività di monitoraggio, prevedendo l'organizzazione di corsi di formazione e aggiornamento tecnico.
- Approcci metodologici per lo sviluppo delle conoscenze circa i fenomeni geofisici legati alle attività antropiche e naturali; sui metodi di monitoraggio; sulla valutazione dei rischi attesi.
- 5. Relazioni nazionali e internazionali con altri centri e strutture preposti al monitoraggio, progettualità e interazione con partner scientifici.

Figura 1. I centri costituiti all'interno dell'INGV.

6. Divulgazione dei risultati di monitoraggio nel rispetto delle direttive indicate negli ILG.

La direzione e la gestione delle attività del CMS sono affidate ad un Responsabile e ad un Comitato Direttivo. Alla data di stesura del presente documento, il Responsabile del CMS è individuato nella persona del Dr. Andrea Morelli, Dirigente di Ricerca dell'INGV. Il Comitato Direttivo è composto dal Responsabile del CMS e dai Responsabili di tutti i Progetti di monitoraggio per i quali INGV è nominato dal MiSE Struttura Preposta al Monitoraggio.

Il CMS dispone di un centro di Calcolo ed Elaborazione Dati dedicato, ubicato presso la Sezione INGV di Bologna, che provvede all'immagazzinamento dei dati di monitoraggio su scala nazionale e ne supporta l'analisi, curando affidabilità, backup, manutenzione e funzionamento. La raccolta dei dati di monitoraggio del CMS è intenzionalmente distinta e completamente indipendente dall'acquisizione dei dati della Rete Sismica Nazionale (RSN) che invece avviene presso la sede centrale INGV di Roma. Le attività di monitoraggio del CMS prevedono un servizio di reperibilità coordinato a scala nazionale, comprendendo personale che afferisce ai Progetti di Monitoraggio del Centro.

L'INGV si impegna ad integrare i dati delle stazioni della propria rete nazionale (pubblica) nell'elaborazione dei dati del CMS; diversamente, i dati raccolti dal CMS sono vincolati alle clausole di riservatezza definite nei rispettivi Protocolli di Trasmissione Dati e non vengono resi disponibili alla comunità INGV. Solo il personale afferente al Centro di Monitoraggio ha accesso ai dati di monitoraggio nell'ambito dei turni di reperibilità ed è comunque vincolato a sottoscrivere un documento che regolamenta le condizioni di utilizzo dei dati trasmessi dalle Società titolari di concessioni. Per l'utilizzo dei dati della concessione Val d'Agri, il documento in questione è allegato come All1_Condizioni_Utilizzo_VdA.

Management

In accordo con quanto previsto nell'Allegato 1 (PGU 7696 del 16/06/2017) all'Accordo Quadro, i Responsabili della Sperimentazione hanno coordinato le attività del Progetto sia internamente all'Ente di appartenenza che esternamente nei rapporti nazionali e internazionali.

In particolare i Responsabili hanno avuto un ruolo rilevante internamente all'INGV nelle seguenti attività:

- supporto alla Dirigenza dell'Ente per l'Istituzione e l'organizzazione del Centro di Monitoraggio del Sottosuolo.
- supporto alla Dirigenza dell'Ente per integrare il Protocollo di Emergenza di Ente (PGU 10863 del 22/07/2019) che regola mansioni, ruoli e responsabilità per eventi M≥5 sul territorio nazionale, con gli scenari di emergenza di competenza CMS (Figura 2). Per ogni scenario è prevista l'interazione con i diversi ruoli operativi nel contesto dell'emergenza generale INGV per disporre un'azione coordinata a livello di Ente. Specificamente, si prevede di interagire con l'Unità di Crisi INGV, con la Sala Operativa di Roma INGV, con l'Ufficio di Comunicazione (Figura 3).

Figura 2. Possibili scenari di emergenza di competenza CMS nel contesto di un'emergenza di Ente. Figura 3. Interazione per livelli di comando nel caso di scenario A1, ovvero evento di magnitudo M>5 interno ad un dominio di monitoraggio di competenza CMS.

 stesura dei protocolli operativi e dei mansionari destinati a disciplinare compiti, ruoli, responsabilità delle figure coinvolte nel monitoraggio quasi real-time (Figura 4).

Figura 4. Diagrammi di flusso che descrivono le attività del turnista sismologo nel caso di situazione ordinaria (green) e in caso di allerta (yellow) in accordo con quanto previsto dagli ILG. La descrizione analitica delle mansioni dell'analista in turno presso il Centro di Acquisizione Dati è riportata nei mansionari in corso di redazione e soggetti all'approvazione del CdA dell'INGV.

 coordinamento con la Sala Operativa dell'INGV in caso di eventi sismici di competenza comune. In particolare, con il Responsabile della Sala Operativa di Roma e con il Direttore dell'Osservatorio Nazionale Terremoti, è stato definito un piano d'azione per integrare i dati delle stazioni sismiche della Rete Sismica Nazionale (RSN) nelle aree di competenza del CMS, e coordinare le comunicazioni ufficiali alle rispettive istituzioni (DPC e MiSE) (Tabella 1).

	RNS_per_VdA									
Station code	Site	Start date	Latitude	Longitude	Elevation					
ACER	Acerenza	05/07/2007	40.7867	15.9427	690					
CRAC	Craco	23/02/2006	40.3814	16.4350	384					
MCEL	Monticello	07/08/2006	40.3249	15.8019	960					
MIGL	Miglionico	07/08/2006	40.6044	16.4410	440					
MMN	Mormanno	24/06/2009	39.8910	15.9904	921					
MTSN	Montesano sulla Marcellana	07/08/2006	40.2663	15.7515	1056					
ORI	Oriolo Calabro	01/03/2003	40.0510	16.4504	375					
PZUN	Potenza Università	19/09/2018	40.6458	15.8070	820					
SALB	San Lorenzo Bellizzi	03/09/2009	39.8772	16.3459	1200					
SCHR	San Chirico Raparo	05/12/2003	40.1992	16.0759	968					
SIRI	Monte Sirino - Moliterno	07/08/2006	40.1821	15.8675	1063					
SLCN	Sala Consilina	01/03/2003	40.3900	15.6328	986					

Tabella1.CodiceecoordinatedellestazionisismichedellaReteSismicaNazionale(RSN)integratenell'analisideidatidelCMScomeconcordatoconlaSalaOperativadell'ONT.

- Interazione nelle attività di analisi di dati offline in accordo con unità funzionali interne all'INGV.
- stesura del piano assunzionale (definizione di profili professionali, bandi di concorso).
- definizione e pianificazione delle spese.

Figura 5. Mappa delle stazioni sismiche della Rete Sismica Nazionale INGV parzialmente già integrate nel sistema di acquisizione del CAD-BO per la localizzazione degli eventi locali e regionali.

Per le attività di rappresentanza dell'INGV ove richiesto i Responsabili sono intervenuti in:

- partecipazione attiva alle riunioni del Comitato organizzate presso il MiSE.
- contributo di osservazioni e commenti condivisi con il GdL preposto alla revisione degli ILG in termini di ottimizzazione, perfezionamento e integrazione delle disposizioni vigenti.
- partecipazione a workshop, convegni, seminari nazionali e internazionali:
 - Workshop AG Induzierte Seismizität (AGIS), Geozentrum, Hannover, Nov. 2019: Braun & S. Danesi: "The first six months of monitoring hydrocarbon exploitation in Val d'Agri (Basilicata, Italy), according to the governmental guidelines".
 - 38° Convegno G.N.G.T.S., 12.-14. Nov. 2019, Roma/Italy: S. Danesi & T. Braun: "Monitoring hydrocarbon exploitation in Val d'Agri (Basilicata, Italy), following the governmental guidelines ILG".
 - SSA Annual Meeting: D. Famiani, S. Danesi and T. Braun: Site effects in the Val d'Agri basin (Southern Italy). Seismol. Res. Lett. 91. DOI: 10.1785/0220200043.
- pubblicazioni articoli scientifici su riviste internazionali peer-review:
 - T. Braun, S. Danesi, A. Morelli (2020): Application of monitoring guidelines to induced seismicity in Italy. J. Seismology. DOI: 10.1007/s10950-019-09901-7.

- T. Braun & S. Danesi (2020): Die ministerialen Richtlinien Italiens zur Überwachung der Seismizität, der Untergrunddeformation und des Porendruckes bei anthropogenen Aktivitäten. Mitt. Dt. Geophys. Ges., (1), 5-9.
- A. Garcia-Aristizabal, S. Danesi, T. Braun, M. Anselmi, L. Zaccarelli, D. Famiani and A. Morelli (2020): Epistemic uncertainties in local earthquake locations and implications for managing induced seismicity. Bull. Seismol. Soc. Am., submitted.

Trasferimento dati pregressi da ENI a INGV

Come stabilito nel Protocollo di Trasmissione Dati, il volume completo di informazioni viene regolarmente trasmesso da ENI a INGV e i gruppi di analisi lavorano in modo collaborativo. L'ultimo incontro tra rappresentanti INGV ed ENI si è tenuto a San Donato Milanese il giorno 14 febbraio u.s., i partecipanti sono qui riportati:

Dati industriali e geologici

- Dati di produzione dall'inizio delle operazioni nel campo di Val d'Agri (volume estratto/tassi di produzione, pressione di poro), di tutti i pozzi, alla risoluzione temporale più alta possibile (almeno giornaliera).
- Dati di iniezione di acque di formazione a Costa Molina 2 (*injection rate*, volumi, pressione): la risoluzione temporale con più dettagli possibili (almeno giornaliera).
- Coordinate dei pozzi di produzione e di iniezione (x, y, z).
- Catalogo delle faglie identificate da rilievi geologici.
- Catalogo delle frane.

Figura 6. Incontro ENI-INGV 14 febbraio 2020.

Dati sismologici

- Catalogo di sismicità dall'inizio delle attività di monitoraggio: Tempi origine, localizzazioni, magnitudo, *picking* fino a Gennaio 2020.
- Metadati e risposte strumentale di tutte le stazioni in esercizio e sintesi stato operatività della rete.
- Modello di velocità utilizzato dall'operatore per l'analisi, algoritmo di inversione e relazione di scala di magnitudo usato per le localizzazioni.
- Datastream registrate in VA dalla rete sismica ENI fino a Gennaio 2020.

Dati Global Navigation Satellite System e InSAR

- Dati giornalieri in formato RINEX con campionamento a 30 secondi per ognuna delle stazioni per tutto l'intervallo di tempo disponibile.
- Dati InSar finora acquisiti e prodotti dell'analisi di dati InSAR finora elaborati.

Dati pressione di poro

- Registrazione dei profili statici.
- Misure di pressione da sensori permanenti (downhole permanent gauges).
- Misure di pressione da sensori temporanei *(memory gauges)*.

A causa dello stato di emergenza COVID-19, il trasferimento del volume completo di dati come è stato concordato non è stato finora possibile, benché siano state pianificate modalità e dettagli; analogamente, il *survey* a tutte le stazioni Eni, sismiche e cGPS, programmato per la primavera del 2020 in Val d'Agri è stata spostata a data da destinarsi.

Acquisizione e archiviazione dati

Strumentazione della rete sismica ENI

La Rete ENI di Monitoraggio Sismico in Val d'Agri è attualmente costituita da 17 stazioni a 6 canali (velocimetri e accelerometri a 3 componenti). 16 stazioni sismiche sono installate in superficie e un sensore sismico (PADH) è stato deposto all'interno di un pozzo ad una profondità di 140 m. Con eccezione delle stazioni ARME e MANE, equipaggiate con sensori triassiali a larga banda (modello Sara SS08-50s), tutte le altre stazioni della rete VA sono dotate di velocimetri a breve periodo (1s) con caratteristiche identiche (vedi Figura 7 e Figura 8). L'intera rete utilizza digitalizzatori a 6 canali (modello DYMAS24 dinamica di 144 dB) sincronizzati via GPS.

geographical		geograp	ohical c	oordinates					inst	rumentati	on			datastream			smp	disinstallation	date	
location	Latitude	Longitude	altit.	Latitude	Longitude	digitizer	dyna	LSB	scale	gain	Sensortype	Sensorfreq-	Gain		co	de		rate	in	stallation date
station name	[*N]	[°E]	[m]	[°N]	[°E]	model	[bit]	[V/cts]	factor	[cts/V]	seismometer	band [Hz]	[Vs/m]	NW	/ STA	LOC	CH	[Hz]	on	off
Abriola	40.500000	15.759444	1542	40° 30' 00"N	15° 45' 34"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	ABRE	00	EH*	200	17/10/2018	open
Armento	40.315278	16.031111	989	40° 18' 55"N	16° 01' 52"E	DYMAS24	24	1.192E-06	1	838861	Sara SS-08	0.02-100Hz	1500	VA	ARME	00	HH*	200	18/09/2019	26/11/2019
				"							Le3D-MKII	1-100Hz	400			01	EH*	200	04/12/2019	open
Brienza New	40.490000	15.613611	935	40° 29' 24"N	15° 36' 49"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	BRIN	00	EH*	200	17/10/2018	open
Castelmezzano	40.552222	16.072222	703	40° 33' 08"N	16° 04' 20"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	CASE	00	EH*	200	17/10/2018	open
Grumento Nova	40.307500	15.863056	570	40° 18' 27"N	15° 51' 47"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	FORE	00	EH*	200	17/10/2018	open
Grumento Nova	40.298611	15.893889	550	40° 17' 55"N	15° 53' 38"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	GRUE	00	EH*	200	17/10/2018	open
Guardia Perticara	40.367778	16.068611	674	40° 22' 04"N	16° 04' 07"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	GUPE	00	EH*	200	17/10/2018	open
Laurenzana	40.439444	15.943333	1090	40° 26' 22"N	15° 56' 36"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	LAUE	00	EH*	200	17/10/2018	open
Marsico Nuovo	40.458611	15.734444	1188	40° 27' 31"N	15° 44' 04"E	DYMAS24	24	1.192E-06	1	838861	Sara SS-08	0.02-100Hz	1500	VA	MANE	00	HH*	200	19/09/2019	open
Marsico Vetere	40.391667	15.810556	1061	40° 23' 30"N	15° 48' 38"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	MARE	00	EH*	200	17/10/2018	open
Moliterno	40.250000	15.829167	1153	40° 15' 00"N	15° 49' 45"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	MOLE	00	EH*	200	17/10/2018	open
Montemurro	40.331944	15.982778	1152	40° 19' 55"N	15° 58' 58"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	MOME	00	EH*	200	17/10/2018	open
CO Viggiano	40.314444	15.902500	610	40° 18' 52"N	15° 54' 09"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	PADE	00	EH*	200	10/07/2018	18/12/2019*)
				"	"		-									01	HN*	200	15/01/2020	22/01/2020
				"												01	EH*	200	22/01/2020	open
CO Viggiano BH	40.314444	15.902500	470	40° 18' 52"N	15° 54' 09"E	DYMAS24	24	1.192E-06	1	838861	Le3D-BH	1-100Hz	400	VA	PADH	00	EH*	200	10/07/2020	open
Spinoso	40.218056	15.978889	1319	40° 13' 05"N	15° 58' 44"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	SPIE	00	EH*	200	17/10/2018	open
Tito	40.556667	15.692222	676	40° 33' 24"N	15° 41' 32"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	TITE	00	EH*	200	17/10/2018	open
Viggiano	40.334722	15.900556	816	40° 20' 05"N	15° 54' 02"E	DYMAS24	24	1.192E-06	1	838861	Le3D-MKII	1-100Hz	400	VA	VIGE	00	EH*	200	17/10/2018	open

Figura 7. Rete sismica ENI - registrazione della velocità del moto del suolo. *) in data 18/12/2019, causa cavo difettoso, il velocimetro della stazione PADE non registra più correttamente.

geographical		geogram	hical o	oordinates		instrumentation								datas	ream		smp	disinstallation	date	
location	Latitude	Longitude	altit	Latitude	Longitude	digitizer	dyna	ISB	scale	gain	Sensortyne	Sensorfreg	Gain		codo			rate	installation date	
station name	[PN]	[*E]	[m]	[Phi]	[PE]	model	[bit]	[V/etc]	factor	Lete ///	colomomotor	[U-1	D//al	NINA	(STA		CH	ful-1		off
station name	[N]	[5]	fuil	[10]	[5]	model	[DIL]	[v/cts]	Tactor	[[[]]	seismometer	[nz]	[v/R]	NW	JIA	LUC	Ch	[nz]	on	011
Abriola	40.500000	15.759444	1542	40° 30' 00"N	15° 45' 34"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	ABRE	01	HN*	200	17/10/2018	open
Armento	40.315278	16.031111	989	40° 18' 55"N	16° 01' 52"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	ARME	01	HN*	200	18/09/2019	04/12/2019
Brienza New	40.490000	15.613611	935	40° 29' 24"N	15° 36' 49"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	BRIN	01	HN*	200	17/10/2018	open
Castelmezzano	40.552222	16.072222	703	40° 33' 08"N	16° 04' 20"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	CASE	01	HN*	200	17/10/2018	open
Grumento Nova	40.307500	15.863056	570	40° 18' 27"N	15° 51' 47"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	FORE	01	HN*	200	17/10/2018	open
Grumento Nova	40.298611	15.893889	550	40° 17' 55"N	15° 53' 38"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	GRUE	01	HN*	200	17/10/2018	open
Guardia Perticara	40.367778	16.068611	674	40° 22' 04"N	16° 04' 07"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	GUPE	01	HN*	200	17/10/2018	open
Laurenzana	40.439444	15.943333	1090	40° 26' 22"N	15° 56' 36"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	LAUE	01	HN*	200	17/10/2018	open
Marsico Nuovo	40.458611	15.734444	1188	40° 27' 31"N	15° 44' 04"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	MANE	01	HN*	200	19/09/2019	open
Marsico Vetere	40.391667	15.810556	1061	40° 23' 30"N	15° 48' 38"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	MARE	01	HN*	200	17/10/2018	open
Moliterno	40.250000	15.829167	1153	40° 15' 00"N	15° 49' 45"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	MOLE	01	HN*	200	17/10/2018	open
Montemurro	40.331944	15.982778	1152	40° 19' 55"N	15° 58' 58"E	DYMAS24	24	1.192E-06	1	838861	-	-	-	VA	MOME	-	-	-	-	-
CO Viggiano	40.314444	15.902500	610	40° 18' 52"N	15° 54' 09"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	PADE	01	HN*	200	10/07/2018	15/01/2020
Spinoso	40.218056	15.978889	1319	40° 13' 05"N	15° 58' 44"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	SPIE	01	HN*	200	17/10/2018	open
Tito	40.556667	15.692222	676	40° 33' 24"N	15° 41' 32"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	TITE	01	HN*	200	17/10/2018	open
Viggiano	40.334722	15.900556	816	40° 20' 05"N	15° 54' 02"E	DYMAS24	24	1.192E-06	1	838861	Sara SA10	200	5	VA	VIGE	01	HN*	200	17/10/2018	open

Figura 8. Rete sismica ENI - registrazione dell'accelerazione del moto del suolo. In attesa del sito definitivo, attualmente la stazione MOME non è dotata di un sensore accelerometrico.

Centro di acquisizione ed elaborazione dati @INGVBologna

Il Monitoraggio della microsismicità in Val d'Agri, nell'ambito delle attività del CMS, si avvale dell'infrastruttura del Centro di Aquisizione del CMS presso la sede di Bologna (CAD-BO).

- 1. Hardware: server collegato ad un sistema di archiviazione dati (mass storage):
 - Sistema modulare ed espandibile.
 - n. 2 Server multiblade + chassis:
 - Continuità Operativa (Disaster Recovery, Assistenza 5dx8h)
 - Ridondanza.
 - Green Computing (sostenibilità ambientale, efficienza energetica, costo di smaltimento e riciclaggio).
 - Compatibilità Free/Libre e Open Source Software, Componenti Intel.
 - Storage Array SCv3000:
 - #2 controller.
 - #2 power supplies.
 - #2 10GBASE-T with RJ45 connectivity per controller.
 - #16 8TB, SAS, 12Gb, 7.2K, 3.5" HDD.
- 2. Software: SeisComP3 (SC3):

_

- Licenze binarie per SeisComP3 + moduli aggiuntivi.

- Supporto da remoto.
- Installazione, configurazione, test.
- Training courses per analisti (beginners & advanced vd pt 3,4)
- Caratteristiche SC3:
 - acquisizione *datastream* dei segnali sismici in tempo reale.
 - analisi automatica di dati (parametri ipocentrali, Magnitudo) in tempo quasi reale.
 - rielaborazione manuale (revisione parametri, calcolo meccanismo focale, PGV, PGA).
 - Reportistica.
 - WEB.
- 3. 1 settimana *training course I level beginner* (Febbraio 2019).
- 4. 1 settimana *training course II level advanced* (Febbraio 2020).

Relativamente ai punti (3) e (4), a Febbraio 2019 e 2020 presso la sede INGV di Bologna, sono stati organizzati due corsi di SC3, tenuti da GEMPA, per la formazione del personale tecnico e scientifico coinvolto nel monitoraggio, per l'installazione e la configurazione custom del software SC3 sulla macchina di acquisizione, completo dei seguenti moduli aggiuntivi:

Modulo	Funzione
CAPS	Multi-format acquisition server.
SCANLOC	Cluster-search based earthquake detection algorithm using automatic P- and S- phases.
NPEVAL	Network performance evaluation.
GDS	Template-based dissemination system for sending earthquake bulletins via email, twitter or sms.
GAPS	web based graphical user interface including EQView, StationView, TraceView, Webscolv.

Tabella 2. Moduli SC3.

Acquisizione dati sismici

Schema di acquisizione

Attualmente i dati registrati in Val d'Agri dalla rete sismica di ENI vengono inviati in tempo reale ai server della ditta SolGeo (Bergamo) dove avviene l'archiviazione dei *datastream* in formato *miniseed*. Al fini del monitoraggio sismico (localizzazione ipocentrale, Magnitudo, PGA, PGV) le sale di controllo dell'ENI (San Donato Milanese) e dell'INGV-CMS (Bologna) ricevono in tempo reale i *datastream* per effettuare l'analisi dati (vedi Figura 10).

Figura 10. Flusso dei dati sismici dalle singoli reti a SOLGEO che inoltra i dati alle sale di controllo dei concessionari e del CMS.

> Contestualmente, il CAD-BO riceve i segnali in real time delle stazioni sismiche broad-band della Rete Sismica Nazionale elencate in Tabella 1 e ne integra i dati ai fini del monitoraggio. Inoltre è in corso di realizzazione l'acquisizione in tempo reale dei dati di altre reti pubbliche permanenti che abbiano stazioni in siti prossimi ai domini di monitoraggio; in particolare verranno acquisiti i dati di alcune stazioni della reti Irpinia Seismic Network e INSIEME (ISNethttp://isnet.amracenter.com, https://www.fdsn.org/networks/detail/3F_2016/).

Test di connettività ai server

Sono stati effettuati dei test di connettività dal CAD-BO ai server della ditta SOLGEO; dopo l'esito positivo della ricezione dei *datastream* attraverso SC3 sulle macchine *Startrek* e *Spok* (con indirizzo IP pubblico) del CAD-BO è partita l'acquisizione dei dati in tempo reale sulla macchina *Enterprise*. Attualmente è completata la configurazione dei due *hypervisor* e dello *storage array*. Deve essere terminata l'implementazione della *high availability* di connessione tra i due *hypervisors* per garanzia di coerenza e integrità dei dati tra le macchine virtuali gemelle ospitate negli *hypervisor* stessi.

Archiviazione dei dati

I dati pregressi, ricevuti da parte di ENI per il periodo Giugno 2001 - Gennaio 2020 sono stati organizzati ed uniformati per essere conformi al formato e alla struttura dell'archivio di SeisComP3. Più nello specifico, per quanto riguarda i dati acquisiti dalle stazioni Mars88 nel periodo 2001 - 2018 si è proceduto come segue:

- Sono stati convertiti i dati dal formato ".gse" al formato ".mseed".
- E' stato modificato il codice stazione contenuto nell'header dei file miniseed rimuovendo lo spazio che precede il codice stazione di tutti i file per adattarli al formato previsto dei file station.xml contenenti i metadati delle stazioni costituenti la rete sismica.
- Sono stati rinominati i data-stream in:
 - SH[ZNE] passo di campionamento 62.5 Hz per il periodo 2001-16/09/2012.
 - EH[ZNE] passo di campionamento 125 Hz per il periodo 17/09/2012-2018.

Per quanto riguarda invece i dati registrati in continuo con acquisitori Solgeo DYMAS24 si è proceduto come segue:

 E' stato modificato il codice stazione contenuto nell'header dei file miniseed rimuovendo lo spazio che precede il codice stazione di tutti i file per omologarli al formato previsto dei file station.xml contenenti i metadati delle stazioni costituenti la rete sismica

Tutti i file miniseed cosí corretti sono stati processati con il modulo "*SCART*" di SeisComP3 che si occupa della loro strutturazione nel formato di archiviazione previsto da SeisComP3 che é cosí organizzato:

```
archivio/
anno/ [2019]
codice_rete/ [VA]
codice stazione/ [ABRE]
codice location/ [00]
codice canale/ [EHZ]
nome_file_in_formato_standard
[VA.ABRE.00.EHZ.D.2019.248]
```

I dati pregressi così organizzati sono pronti per essere utilizzati da tutti i moduli di SC3.

Creazione file metadati rete (station.xml)

Usando il portale SMP (*Station Management Portal*) di GEMPA (disponibile online al seguente indirizzo: <u>https://smp.gempa.de</u>), è stato realizzato il file

station.xml contenente la cronistoria dei metadati associati ad ogni singola stazioni della rete sismica. Più nello specifico i metadati vengono utilizzati dal sistema di acquisizione per riconoscere correttamente il flusso di dati ricevuto ed organizzarlo in funzione dei seguenti parametri relativi alla rete in generale e alle singole stazioni:

- 1. Data di creazione della rete.
- 2. Data di installazione delle diverse stazioni.
- 3. Coordinate spaziali (espresse in gradi decimali) e quota delle stazioni con denominazione della località.
- 4. Caratteristiche specifiche dell'acquisitore e del/dei sensori di ogni stazione e loro eventuali variazioni nel tempo (dovute a manutenzione per malfunzionamenti o sostituzione). Tenere traccia di questa informazioni è molto importante per operare la dovuta correzione dei valori di ampiezza, pre-processing fondamentale per la stima della Magnitudo di un evento. La correzione delle ampiezze è inoltre utile per verificare la qualità della registrazione in funzione del rumore ambientale presente al sito di installazione (Report 2019/I, Braun, Danesi, Famiani, 2019).
- 5. Codice numerico distintivo Location (in caso esistano più sensori installati nello stesso sito, es. velocimetro + accelerometro).
- Codice dei singoli canali che varia in base alle caratteristiche del sensore e al passo di campionamento (sps) dei dati acquisiti (espresso in Hz - numero di campioni ogni secondo). La seguente tabella riporta la sintesi dei vari codici e il loro significato.

Band/Instrument code	Band/Instrument type	Corner period	Sample rate (Hz)		
SH	Short Period Seismometer	< 10 s	10 ≤ sps < 80		
EH	Extreme Short Period Seismometer	< 10 s	80 ≤ sps < 250		
НН	High Broad Band Seismometer	≥ 10 s	80 ≤ sps < 250		
HN	High Broad Band Accelerometer	≥ 10 s	10 ≤ sps < 80		

Tabella3.EstrattodaSeed Manual (2012).

In caso di variazioni della configurazione della rete da parte di ENI (cambio canale, sostituzione o installazione di strumentazione) è fondamentale aggiornare prima possibile il file dei metadati per evitare interruzioni nell'acquisizione dei dati in tempo reale.

Per quanto riguarda il punto 4 di cui sopra, si fa notare che a partire dal 2001 anno di messa in esercizio della rete sismica ENI in VA - ad oggi la configurazione della stessa ha subito diversi cambiamenti. In seguito all'aggiornamento del 2018, la rete è stata equipaggiata con nuovi acquisitori a 24 bit impostati in modalitá di registrazione dei dati sismici in continuo e le caratteristiche tecniche della strumentazione (digitalizzatori, velocimetri, accelerometri) sono regolarmente registrate nel database IRIS NRL (*Library of Nominal Responses for Seismic Instruments* <u>http://ds.iris.edu/NRL</u>), integrato nel portale SMP di GEMPA con l'obiettivo di importare agevolmente le informazioni legate agli strumenti utilizzati e inserirle nel file dei metadati.

Per i dati sismici pregressi (da 06/2001 a 10/2018) la compilazione del file station.xml si è rivelata complessa, in quanto gli acquisitori Lennartz Mars88 in uso non sono presenti nel database NRL. E' stato quindi necessario ricostruire manualmente i parametri caratteristici tecnici, sulla base delle informazioni fornite da ENI (Figura 11).

Figura 11. Esempio di creazione manuale di risposta dello strumento tramite il portale SMP (Station Management Pool) di GEMPA (https://smp.gempa.de).

La rete di monitoraggio geodetico ENI

Una stazione di misura Global Positioning System (GPS) continua, o più in generale una stazione Global Navigation Satellite System (GNSS) quando questa è in grado di registrare i segnali trasmessi da molteplici costellazioni di satelliti di posizionamento (es., GPS, Glonass, Galileo, ecc..), permette di ottenere una misura dell'evoluzione nel tempo della posizione di un punto sulla superficie terrestre con precisione millimetrica. Lo studio delle serie temporali di

spostamento di stazioni GNSS è di fondamentale importanza in diverse applicazioni, che vanno dallo studio dei processi tettonici e vulcanici, allo studio di frane, subsidenze e deformazioni indotte da processi antropogenici.

Secondo le raccomandazioni degli ILG per il monitoraggio geodetico, deve essere installata una "rete locale di stazioni GPS permanenti di precisione, distribuite opportunamente in funzione dell'estensione e delle caratteristiche dell'area da monitorare [...] si richiede che le stazioni abbiano interdistanze inferiori a 10-15 km". In Figura 12 è mostrata la rete progettata da ENI e in fase di realizzazione per la concessione Val d'Agri per un totale di 12 siti, in cui sono indicate le interdistanze (in km) tra i vari punti identificati, rispettando le raccomandazioni ministeriali.

Attualmente le stazioni installate, i cui dati sono stati forniti alla SPM, sono 5, ossia secondo la nomenclatura riportata in Figura 12 sono CGPS5, CGPS7, CGPS8, CGPS9 e CGPS11. Le stazioni in questione sono identificate secondo gli standard di nomenclatura internazionale con ID unici a 4 caratteri alfanumerici riportati in Tabella 4. Si fa presente che la concessionaria ha identificato inizialmente la stazione CGPS8 con l'ID VIGG, ma essendo già in uso per un altro

Figura 12. Rete di monitoraggio geodetico per la concessione Val d'Agri in fase di realizzazione da parte di ENI, (Immagine fornita gentilmente da ENI). sito pubblico, questa è stata rinominata, per il solo scopo di processamento, con l'identificativo VIG3.

Come indicato in Tabella 4, i dati provenienti da due stazioni (MAE1 e VIG3) ricoprono più di tre anni di dati, altre due stazioni (INN2 e TLMA) hanno poco più di un anno di dati e la quinta (TEVE) ha solo pochi mesi di dati. Alcuni siti mostrano una percentuale di dati mancanti superiore al 10% dovuti a motivi tecnici per cui la stazione è rimasta spenta. Le tempistiche di installazione delle stazioni mancanti non sono note e di difficile previsione perché dipendono da diversi fattori tecnici e amministrativi.

Nome sito ENI	Nome sito INGV	Longitudine (°N)	Latitudine (°E)	Quota (m)	Data inizio acquisizione	Intervallo temporale (anni)	% dati mancan ti
CGPS7	INN2	15.7848	40.3626	647	19/06/2018	1.534	16.6
CGPS9	MAE1	15.9583	40.3067	653	06/04/2016	3.735	7.6
CGPS11	TEVE	16.0313	40.3153	1036	03/10/2019	0.243	1.1
CGPS5	TLMA	15.9789	40.3981	1132	18/12/2018	1.035	11.1
CGPS8	VIG3	15.8874	40.3132	633	14/12/2016	3.046	3.6

Tabella 4. Codice e coordinate delle stazioni GPS installate da ENI, data di inizio delle acquisizioni, intervallo temporale attualmente coperto dai dati e percentuale di epoche mancanti nell'intervallo di tempo di acquisizione.

Figura 13. Stazione CGPS VIG3: a destra antenna Topcon monumentata su pilastro e alimentata da corrente elettrica а costante, al tensione centro è posizionato il corner reflector SAR valido per entrambe le orbite di acquisizione satellitare, (Foto fornita gentilmente da ENI).

Le stazioni attive sono tutte equipaggiate con strumentazioni in grado di registrare in continuo le portanti L1 e L2 (ossia stazioni di precisione a doppia frequenza) della costellazione GPS con campionamento a 30 s. In Figura 13 è mostrato il sito di installazione per la stazione VIG3, alimentata con la corrente elettrica a tensione costante via cavo. Si può osservare che il sito è isolato e recintato, l'antenna è monumentata su un pilastro di cemento e all'interno dell'area è stato collocato un *corner reflector* SAR valido per entrambe le geometrie di acquisizione satellitare. In particolare questa stazione è equipaggiata con un ricevitore LEICA GR10 e con una antenna *Choke-Ring* con elemento *Dorne Margolin della Topcon* (modello TPSCR4) e dotata di duomo TPSH.

Questa stessa configurazione di installazione dovrebbe essere stata applicata anche per la stazione MAE1 con l'unica differenza che in questo caso è stata usata un'antenna della Leica, modello LEIAR20 dotata di duomo LEIM. In Figura 12 sono indicati con un pallino rosso le stazioni GPS che sono (e saranno secondo il progetto) installate seguendo questo tipo di configurazione.

Per quanto riguarda le altre stazioni sappiamo che sono equipaggiate con la stessa strumentazione (ricevitore e antenna) della stazione MAE1, con l'unica differenza che per le stazioni TEVE e TLMA è stato installato un ricevitore LEICA GR30. Ulteriori informazioni tecniche riguardo l'alimentazione, la monumentazione e la configurazione di sito di queste stazioni sarebbero necessarie per avere un quadro completo della loro qualità e affidabilità.

Monitoraggio e analisi dati

Log Book

Data	Evento							
7 Giugno 2019	Test di acquisizione di dati sismici in tempo reale sulla macchina INGV Startrek (193.204.89.170) direttamente dai seguenti server di SOLGEO:							
14 Giugno 2019	Consegna Hard Disk dati Eni Val d'Agri Gen-Mag 2019 (Lagomarsino Daniela).							
20 Giugno 2019	Restituzione Hard Disk dati Eni Gen-Mag 2019 (Lagomarsino Daniela)							
11 Settembre 2019	Richiesta INGV a Solgeo di aprire l'accesso ai dati anche all'IP della macchina Spok (193.204.89.188) per acquisizione ridondante							
26 Settembre 2019	Richiesta INGV a Solgeo di intervento per problemi tecnic di acquisizione: da questa data entrambe le macchine (Spok e Startrek) acquisiscono regolarmente							
11 Ottobre 2019	Consegna Hard Disk dati Eni Val d'Agri Giu-Ago 2019 (Lagomarsino Daniela).							
16 Ottobre 2019	Consegna dei dati 2019 di pressioni di testa pozzo e di portata del Costa Molina 2							
13 Novembre 2019	Consegna Hard Disk dati Eni Val d'Agri Sett-Ott 2019 (Salvatore Luciano).							
14 Febbraio 2020	Consegna dati sismici, GPS, InSar Nov-Dic 2019 durante incontro presso ENI							
4 Marzo 2020	Inizio acquisizione real time su Enterprise completa di tutte le stazioni							
4 Marzo 2020	Inizio monitoraggio sismico pre-operativo (test turnazione giornaliera)							

Dati sismologici

Durante i primi due anni di sperimentazione dell'applicazione degli ILG, la SPM ha il compito di preparare le condizioni hard-/software per l'acquisizione,

l'archiviazione e l'analisi dei dati sismici. Durante il periodo di monitoraggio preoperativo, la SPM si basa sul bollettino sismico trasmesso con frequenza giornaliera da ENI.

Dopo alcuni test di connettività e a seguito dell'allestimento hard-/software provvisorio presso il CAD-BO, le condizioni di acquisizione dati del CAD possono essere definite sufficientemente stabili, tanto che a partire dal 1 Marzo 2020 la SPM ha avviato una prima fase sperimentale di monitoraggio sismico. Il sistema di elaborazione è strutturato affinché gli operatori in turno di monitoraggio possano connettersi da postazioni remote, distribuite sul territorio nazionale. Questa configurazione si è rivelata particolarmente efficace durante l'emergenza COVID-19 perché ha reso possibile il monitoraggio pre-operativo via VPN da diverse sedi INGV in collegamento verso CAD-BO. La Figura 14 illustra la posizione geografica delle postazioni INGV esterne al CAD di Bologna,

Figura 14. Connessioni telematiche (in modalità SSH) da sedi INGV esterne. attualmente coinvolte nel monitoraggio da remoto: Milano, Roma, Arezzo e L'Aquila.

Commenti relativi ai bollettini di sismicità forniti da ENI

L'unità GEOM (Geodinamica e Monitoraggio Geofisico) del "servizio di Geologia e di Geofisica", operativa presso la sede ENI a San Donato Milanese, trasmette periodicamente i bollettini giornalieri e mensili alla SPM. Tali documenti riportano la localizzazione della sismicità registrata dalla rete sismica VA in tre bollettini differenti (locale, regionale e telesismi), in funzione della loro distanza epicentrale.

Ai fini del monitoraggio, secondo gli ILG, interessa esclusivamente l'analisi dei terremoti con ipocentro all'interno del dominio Esteso (vedi Figura 5). Nell'ambito del monitoraggio sismico aziendale iniziato nel 2001, periodo precedente alla definizione dei domini di rilevazione ILG, ENI aveva classificato un terremoto come "locale" se l'epicentro era localizzato entro un cerchio di raggio 10 km intorno ad una (almeno) stazione sismica della rete VA (vedi cerchi bianchi in Figura 15). Come si può facilmente immaginare, con l'introduzione della definizione ministeriale dei domini di rilevazione DI e DE nel 2017, si è dimostrato che essi non coincidono esattamente con l'inviluppo dei cerchi centrati su ogni stazione. Come evidente dalla Figura 15, alcune zone dei domini rimangono leggermente scoperte, con la conseguenza che alcuni eventi localizzati all'interno di essi possono risultare classificati da ENI come "regionali", per esempio l'evento M_w3.8/M_L4.2 del 26/10/2017 (stella viola in Figura 15).

Figura 15. Mappa degli eventi definiti "locali" con epicentri all'interno delle aree con raggio di ca. 10 km intorno alle singole stazioni della rete sismica ENI.

Commenti relativi alle incertezze delle localizzazioni ipocentrali di eventi sismici locali e alle implicazioni per il monitoraggio sismico

Nel primo rapporto "Progetto di Monitoraggio concessione Val d'Agri (INGV 2019/I) è stato discusso un evento sismico di M1.9, riportato nel bollettino ENI (Bollettino ENI, 2019) per la data 22/07/2019 alle ore 00:48 UTC, con epicentro all'interno del DI e profondità ipocentrale 15 km, esterna ai domini di rilevazione DI/DE (Figura 16).

Considerando che gli ILG definiscono i domini di rilevazione come volumi crostali, confinati in profondità di DI=8 km e DE=13 km (per la concessione VA), la stima dell'incertezza della localizzazione ipocentrale diventa cruciale per la classificazione degli eventi in ottica di attivazione di livelli di allerta. In generale, la qualità e l'incertezza associate al calcolo ipocentrale dipendono da molteplici fattori (Figura 17) tra cui il codice di calcolo *(Earthquake Location Software)*, la lettura delle fasi *(Arrival Time Picking)*, il modello di velocità (*Velocity Model*) e il rapporto Vp/Vs tra il modello di velocità per le onde P e le onde S (v_p/v_s ratio). Per studiare l'incertezza epistemica sulla soluzione finale e la qualità dell'ipocentro, è stata effettuata un'apposita analisi (Garcia-Aristizabal et al., 2020), utilizzando come "esempio test" le registrazioni sismiche dell'evento M1.9 del 22/07/2019 avvenuto nelle vicinanze del pozzo di reiniezione CM2 (Figura 16).

L'utilizzo di quattro differenti codici di calcolo (HypoEllipse, HypoInverse, HypoSat, Hypo71), due possibili set di tempi d'arrivo, quattro modelli di velocità verosimili e 3 possibili rapporti Vp/Vs, definisce un albero degli eventi a 96 soluzioni differenti (Figura 17).

Figura 16. Evento sismico di M1.9 del 22/07/2019 con epicentro all'interno del DI e profondità ipocentrale fuori dal DI.
La Figura 18 mostra la nuvola delle 96 localizzazioni ipocentrali, distribuite in un range di profondità compreso tra 8-20 km, non tutte egualmente probabili, tuttavia tutte possibili. Senza entrare ulteriormente nel merito delle conclusioni del lavoro sottomesso, è da sottolineare che il calcolo delle coordinate ipocentrali è per definizione affetto da una significativa incertezza epistemica quindi la posizione dell'ipocentro rispetto ai domini di rilevazione deve essere sempre considerata con la necessaria cautela e corredata dal relativo errore.

Figura 18. Ipocentri dei terremoti (96 soluzioni) ottenuti per l'evento del 22 lualio 2019 (00:48)utilizzando le possibili configurazioni mostrate nella Figura 17. (a) Vista mappa punti (i blu indicano gli epicentri, i invertiti triangoli le stazioni sismiche e i rettangoli rossi e grigi sono rispettivamente i domini di monitoraggio DE ρ DI; (b) Sezione trasversale A-A (EW); (c) sezione trasversale B-B '(NS). (Garcia-Aristizabal et al., 2020)

Commenti relativi ai parametri di soglia definiti dagli ILG, applicati alla sismicità registrata in VA

Per quanto riguarda il sistema di allerta, gli ILG statuiscono che: "Il sistema decisionale del tipo a semaforo (Figura 19) prevede delle procedure volte a intraprendere delle azioni associate a diversi livelli di attivazione definiti sulla base di valori di soglia dei parametri monitorati. In base alle conoscenze scientifiche attuali, il Gruppo di Lavoro non ritiene opportuno adottare un modello decisionale con degli automatismi a semaforo, legato a valori precisi di soglia, per tutte le varie attività considerate nelle presenti Linee Guida. [...] Nelle more di un miglioramento delle conoscenze in tale settore, è stato scelto un approccio a semaforo basato su parametri misurati **esclusivamente entro un volume di sottosuolo circoscritto nell'intorno del pozzo di reiniezione** e specifiche misure del moto del suolo in superficie."

Figura 19. Livelli di allerta del sistema a semaforo, definiti su base dei parametri Mmax, PGA, PGV.

Livello di attivazione	Semaforo	M _{max}	PGA	PGV
			(% g)	(cm/s)
0	Verde	$M_{max} \leq 1.5$	-	-
1	Giallo	$M_{verde} \leq M_{max} \leq 2.2$	0.5	0.4
2	Arancio	$M_{giallo} \leq M_{max} \leq 3.0$	2.4	1.9
3	Rosso	$M_{arancio} < M_{max}$	6.7	5.8

Nel caso la variazione tra livelli di allerta del sistema a semaforo dovesse automaticamente attivarsi al superamento di soglie di magnitudo stabilite (paragrafo §9.4 degli ILG), ipotizzando per esempio un evento di magnitudo M_L =2.3 con epicentro in prossimità del pozzo CM2, sulla base del vedi §9.3 ILG, si verificherebbe il seguente scenario di azioni:

- 1) quasi real-time:
 - detezione automatica di un evento con M>1.9 con epicentro all'interno di DI ==> livello allerta giallo.
- 2) entro 24/48 ore: La SPM:
 - rianalizza l'evento, ricalcolando Magnitudo e ipocentro.
 - effettua l'analisi delle variazioni dei parametri monitorati verificandone, ove possibile, l'eventuale correlazione con i dati di produzione, reiniezione.
 - informa immediatamente il Concessionario, l'UNMIG e la Regione.
 - convocazione del comitato (RB, MISE, ENI, SPM) di un evento "giallo".
 - il Concessionario fornisce eventuali ulteriori dati sulla produzione, reiniezione.
- 3) qualche giorno dopo:
 - la SPM esegue ulteriori verifiche della profondità (tempo necessario maggiore a 48 ore), possibile riunione del comitato per discutere eventuale riduzione della produzione.
- 4) nel caso sia esclusa, ovvero riscontrata, una correlazione tra le variazioni dei parametri monitorati e i dati di produzione/reiniezione, si attua, rispettivamente, il rientro al livello 0 di ordinarietà, o UNMIG, Regione e il concessionario, sulla base delle analisi della SPM fanno una valutazione complessiva delle informazioni disponibili e stabiliscono se ridurre progressivamente (livello di attuazione 2) o sospendere (livello 3) le attività in corso.

Figura 20. Ipocentri (2001 - 09/2019) registrati dalla rete ENI nell'area di produzione ENI in VA, illustrati in mappa (a) e in profilo (b). Le zone confinate da linee blu e rossa rappresentano rispettivamente i confini del DI e DE. Eventi sono da cerchi e plottati asterischi colorati, secondo la loro magnitudo (vedi legenda). PI= Pertusillo Invaso, CM2, pozzo Costa Molina 2 per di reiniezione delle acque di strato.

La Figura 20 illustra la sismicità registrata e localizzata in VA da ENI nel periodo 2001 - 09/2019 (per dettagli vedi Braun et al., 2020) in relazione ai domini di rilevazione DI (blu) e DE (rosso). La colorazione dei simboli ipocentrali corrisponde al colore del livello di allerta secondo la magnitudo calcolata (vedi schema TLS in Figura 19).

Una delle questioni chiave per l'applicazione del sistema a semaforo delineato negli ILG è il calcolo dei parametri che, insieme alla localizzazione, attivano un certo livello di allerta che si traduce poi nell'applicazione di determinate misure cautelative per la gestione della concessione.

Mentre il picco dell'accelerazione del moto del suolo (*PGA - peak ground acceleration, m/s²*) e il picco della velocità del moto del suolo (*PGV - Peak*

Ground Velocity, m/s) sono misure fisiche, la magnitudo rappresenta un rapporto logaritmico di amplificazione dell'ampiezza di un segnale sismico rispetto ad un valore di riferimento.

Poiché in letteratura esistono diverse relazioni logaritmiche che definiscono diverse scale di magnitudo, ne consegue che per ogni evento sismico esiste una variabilità di valori possibili per la stima di differenti tipi di magnitudo. Attualmente gli ILG non raccomandano una formula specifica.

Per determinare la magnitudo locale di un terremoto, Richter (1935) definisce la classica formula per un sismografo di torsione Wood-Anderson ($T_0 = 0.8$ s, *magnification* = 2800, *damping* = 0.8) come:

dove (vedi Bormann, 2012, DS3.1):

- *log₁₀ A_{max}*: log₁₀ dell'ampiezza massima "zero-a-picco" della traccia misurata in mm sulla componente orizzontale di un sismografo W-A;
- −log₁₀ A₀: fattore correttivo che varia con la distanze epicentrale Δ tra 1.4 (Δ=0 km) a 3.0 (Δ=100 km).

La formula è tarata in maniera tale che un evento sismico di ML=3 ad una distanza epicentrale di 100 km venga registrato da un sismografo W-A con un'ampiezza di 1 mm.

Per i terremoti della California Centrale Bakun and Joyner (1984) hanno empiricamente derivato una correzione della formula di Richter, sostituendo la distanza epicentrale Δ con la distanza ipocentrale *R*:

$$-\log_{10} A_0 = \log_{10} R + 0.00301 R + 0.70$$

Per terremoti crostali in regioni con proprietà di attenuazione simili a quelli della California del Sud, la *IASPEI Working Group on Magnitude Measurement* raccomanda la seguente formula per il calcolo della ML, introducendo la nomenclatura ML (Bormann, 2012).

ML = log10(A) + 1.11 log10 R + 0.00189 R - 2.09

Per il calcolo della Magnitudo locale, ENI procede come segue (ENI, 2019, 2020), "*la Magnitudo Locale è calcolata dall'ampiezza massima delle onde S, utilizzando solo le stazioni con un buon rapporto segnale/rumore: viene applicata la relazione di Bakun-Joyner (1984) al segnale convertito per la risposta del sismografo Wood-Anderson.*" Figura 21. ML in funzione di PGV e profondità per gli eventi sismici localizzati in VA da ENI nel periodo 2001 - 09/2019 (dataset illustrato in Figura 20).

Considerando il fatto che la magnitudo rappresenta un valore a cui è associata una notevole incertezza, può essere critico che la magnitudo sia il parametro determinante per decidere il livello di allerta di un sistema a semaforo (Braun et al., 2020). La Figura 21 mostra le magnitudo in funzione della PGV e della profondità (blu = superficiale, rosso = profondo) per tutta la sismicità locale riportata da ENI nel periodo 2001 - 2019.

La Figura 22 mostra lo stesso dataset in 2D, sullo sfondo colorato in base ai livelli di soglia M e PGV definiti negli ILG. Poiché eventuale sismicità indotta si verifica prevalentemente a profondità molto superficiali e poiché gli ILG prevedono l'applicazione del sistema semaforo esclusivamente per sismicità in vicinanza del pozzo di reiniezione, gli eventi registrati in un'area di 10x10 km² intorno al pozzo CM2 sono illustrati con "rombi bianchi". Questi dati sperimentali evidenziano come il superamento dei livelli di allerta sia governato esclusivamente dal valore della magnitudo, mentre non viene mai superato il livello di soglia PGV. In altre parole, il valore di soglia PGV attualmente definito negli ILG sembra calibrato in modo non opportuno, quindi è oggettivamente inefficace ai fini del monitoraggio.

Come accennato in Braun et al. (2020), è consigliabile che la prossima edizione degli ILG tenga conto del fatto che la magnitudo non sia l'unico parametro discriminante per la determinazione dei livelli di allerta, essendo associata ad

significativa incertezza intrinseca. Sarebbe auspicabile utilizzare una contestualmente i valori di PGV e PGA, che sono osservabili misurabili dai segnali registrati, purché le soglie di allerta per essi definite vengano opportunamente calibrate.

In conclusione è importante ribadire che sia le coordinate ipocentrali che la Magnitudo non rappresentano parametri misurati, ma sono valori calcolati con procedure di calcolo affette da errori epistemici, quindi non forniscono una soluzione univoca. Nell'applicazione del sistema a semaforo, gli ILG richiedono il calcolo di tali parametri ai fini di classificare il livello di allerta. Considerando che tale classificazione influisce sulla gestione della concessione e le azioni da intraprendere, il risultato del nostro studio dimostra guanto sia indispensabile considerare le incertezze delle soluzioni ottenute.

10⁻¹ PGV [mm/s]

MPGV TB 29/03/2

Sismicità locale 10/2019 - 03/2020 localizzata da ENI

10

La Figura 23 illustra in mappa gli epicentri degli eventi sismici localizzati in VA nell'ultimo semestre (simboli gialli), riportati dai bollettini trasmessi da ENI (Bollettino ENI, 2019, 2020). In generale l'attività sismica in Val d'Agri nel periodo dal 01 ottobre 2019 al 31 Marzo 2020 si è rivelata piuttosto bassa. L'eccezione è stata una piccola sequenza sismica nella parte settentrionale del DE (località Pignola) caratterizzata da 28 eventi a partire dal 28/12/2019 con magnitudo compresa tra $0.5 \le ML \le 3.1$ e profondità intorno a 15 km (al di sotto del DE=13, vedi Figura 20).

funzione della PGV per lo stesso dataset di cui sopra (Figura 21), relativo alle soglie del sistema a semaforo definite negli ILG. La sismicità con epicentro all'interno di un'area di 100 km² intorno al pozzo CM2 è illustrata con simboli bianchi.

Figura 23. Epicentri localizzati in VA dal concessionario dalla rete sismica ENI: i cerchi ML<2.2) e gli asterischi (ML≥2.2) indicano gli epicentri nel periodo 2001 - 09/2019 (grigio) e 10/2019-03/2020 (giallo), vedi Tabella 5.

N°	DATA	ORA UTC	LATIT. N	LONG. E	Err. Epic. (km)	PROF. (km)	Err. Prof.	RMS (s)	GAP (°)	Num. Fasi	ML	Err. ML	PGV (m/sec)	PGA (m/sec2)	Epicentro (tav IGM 1:25000)	
178	02/10/2019	02:19:46	40°23.93	15°50.55	2.6	16.0	0.8	0.13	224	8	0.2	0.3	6.05E-07	1.72E-05	Viggiano	
179	02/10/2019	13:19:44	40°24.92	15°39.61	0.9	1.8	0.7	0.02	233	9	0.4	0.1	1.55E-06	9.47E-05	Sala_Consilina	
180	05/10/2019	03:42:57	40°19.68	15°50.78	0.1	3.7	0.2	0.21	47	37	1.1	0.4	6.13E-05	2.53E-03	Grumento_Nova	
181	06/10/2019	03:26:02	40°30.93	15°46.13	NC 1.1	4.1	NC	0.03	360	4	-0.5	0.0	6.00E-07	6.04E-05	Pignola	
182	07/10/2019	07:04:42	40°16.04	15°47.22	1.1	8.6	0.7	0.05	250	/	0.2	0.3	1.60E-06	1.05E-04	I ramutola	
105	11/10/2019	02:21:28:52	40 11.14	15°26 25	0.5	9.2	0.2	0.03	290	20	0.3	0.4	1.702-06	9.20E-05	Sala Consilina	
185	11/10/2019	12:42:46	40°30 25	15°39 71	0.1	15.1	0.1	0.17	135	12	1.0	0.0	3.22E-05	1.46F-04	Tito	
186	12/10/2019	01:00:08	40°10.96	15°57.57	0.2	2.3	0.1	0.15	152	18	1.3	0.3	1.14E-05	4.52E-04	S. Martino dAgri	
187	12/10/2019	01:36:22	40°10.93	15°56.85	0.1	2.0	0.1	0.20	101	36	1.0	0.4	1.92E-05	9.14E-04	Moliterno	
188	12/10/2019	07:14:02	40°13.09	15°58.70	NC	3.7	NC	0.02	181	4	-0.1	0.0	9.92E-07	4.34E-05	S.Martino_dAgri	
189	12/10/2019	07:33:43	40°11.45	15°58.33	0.5	2.9	0.2	0.02	287	8	0.7	0.1	6.20E-06	2.59E-04	S.Martino_dAgri	
190	12/10/2019	09:26:51	40°25.88	15°45.02	0.6	13.2	0.6	0.03	169	8	0.2	0.2	6.03E-07	3.92E-05	Marsico_Nuovo	
191	12/10/2019	19:28:24	40°28.95	15°47.56	0.1	8.2	0.1	0.25	66	39	2.0	0.4	2.55E-04	2.23E-02	Marsico_Nuovo	D
192	14/10/2019	17:01:45	40°31.60	15°51.85	0.4	20.8	0.4	0.11	222	12	0.7	0.3	1.36E-06	8.02E-05	Anzi	
193	14/10/2019	17:41:18	40°29.79	15°50.77	0.7	3.1	5.7	0.01	257	6	0.2	0.3	1.88E-06	1.63E-04	Calvello	
194	14/10/2019	20:38:49	40°31.93	15°46.73	NC	7.4	NC	0.00	360	4	0.3	0.1	1.24E-06	1.18E-04	Pignola	
195	15/10/2019	05:52:14	40°29.15	15°47.48	0.1	6.2	0.2	0.23	66	41	1.7	0.4	1.03E-04	4.24E-03	Marsico_Nuovo	D
196	15/10/2019	10:08:30	40°33.52	15°55.38	0.2	3.8	0.5	0.17	185	13	0.8	0.3	2.79E-06	9.12E-05	Anzi	
197	17/10/2019	03:03:41	40°35.42	15°36.79	2.2	11.5	2.1	0.03	299	6	0.1	0.4	5.99E-07	2.37E-05	Picerno	
198	18/10/2019	04:40:12	40°15.14	15°52.04	0.2	4.5	0.3	0.20	154	15	1.1	0.4	2.30E-05	1.02E-03	Grumento_Nova	1
199	19/10/2019	21:26:16	40°21.58	15°52.55	0.2	12.3	0.3	0.12	105	23	0.6	0.5	2.40E-06	1.61E-04	Viggiano	
200	20/10/2019	17:07:47	40°23.05	15°40.80	0.1	2.2	0.1	0.18	57	45	1.8	0.2	2.60E-05	1.01E-03	Sala_Consilina	D
201	23/10/2019	03:57:33	40°27.13	15°32.45	0.5	14.2	0.5	0.06	302	11	0.4	0.3	8.09E-07	1.03E-04	Atena_Lucana	
202	26/10/2019	07:00:57	40°30.43	15°50.45	1.0	5.9	1.1	0.01	287	8	0.7	0.4	4.67E-06	5.15E-04	Anzi	
203	30/10/2019	09:41:32	40°29.47	15°32.64	0.1	8.8	0.1	0.28	81	38	1.1	0.4	8.62E-05	6.43E-03	Atena_Lucana	
204	30/10/2019	13:25:09	40°26.44	15°34.16	3.7	11.6	4.0	0.02	290	6	0.2	0.2	7.05E-07	5.74E-05	Atena_Lucana	
205	30/10/2019	14:27:07	40°33.33	15°41.48	0.7	7.5	1.1	0.01	275	6	-0.1	0.3	5.54E-07	3.50E-05	Tito	
206	30/10/2019	17:31:31	40°31.68	15-46.58	NC	6.8	NC	0.02	360	4	0.2	0.2	1.52E-06	9.88E-05	Pignola	
207	31/10/2019	03:06:34	40°31.85	15°44.87	0.3	12.2	0.4	0.04	180	12	0.1	0.2	4.70E-06	2.3/E-04	Pignola Corleta Dartiaara	
208	04/11/2019	18:07:46	40 20.78	15 57.96 15°40 24	0.4	0.7	0.5	0.04	71	24	0.4	0.4	3.79E-06	3.30E-04	Coneto_Perticara	
209	06/11/2019	02:30:28	40 17.41 40°12 38	15 49.24 15°45 42	0.1	11.5	0.2	0.22	130	24	1.3	0.4	2.872-05	1.012-03	Porca Possa	
210	06/11/2019	06:01:17	40°12.30	15°45.11	0.2	6.6	0.0	0.00	314	- 14	0.7	0.2	1 10E-06	8 26E-05	Rocca Rossa	
212	10/11/2019	03:54:47	40°18.04	15°48.23	0.2	7.5	0.3	0.16	182	22	0.9	0.3	1.28E-05	7.74E-04	Tramutola	
213	11/11/2019	05:08:28	40°28.15	15°32.79	0.1	8.4	0.1	0.27	75	45	1.9	0.3	4.45E-05	4.24E-03	Atena Lucana	
214	11/11/2019	05:27:48	40°27.91	15°32.65	0.6	9.8	0.4	0.02	318	8	0.4	0.3	1.23E-06	1.09E-04	 Atena_Lucana	
215	11/11/2019	21:31:56	40°21.80	15°51.02	0.1	3.1	2.5	0.10	125	16	0.4	0.3	3.51E-06	1.55E-04	Viggiano	
216	15/11/2019	04:35:42	40°24.01	15°43.60	0.2	12.0	0.4	0.22	183	18	0.5	0.2	8.66E-07	7.20E-05	Marsico_Vetere	
217	15/11/2019	12:33:42	40°31.12	15°50.47	0.6	9.4	1.1	0.11	184	13	0.9	0.2	4.46E-06	2.36E-04	Anzi	
218	18/11/2019	17:34:45	40°23.46	15°43.58	0.8	5.1	0.7	0.02	230	8	0.1	0.2	1.37E-06	1.04E-04	Marsico_Vetere	
219	19/11/2019	20:57:05	40°31.92	15°42.78	0.7	17.6	0.5	0.05	150	11	0.5	0.2	8.09E-07	5.03E-05	Pignola	
220	21/11/2019	01:41:58	40°33.93	15°39.84	0.1	2.4	0.1	0.39	79	34	0.9	0.2	1.82E-05	9.72E-04	Tito	
221	21/11/2019	06:51:25	40°25.97	15°41.50	0.1	7.4	0.2	0.24	75	28	0.6	0.1	2.07E-06	2.33E-04	Brienza	
222	23/11/2019	18:59:23	40°14.58	15°56.88	0.2	8.3	0.4	0.04	138	8	0.2	0.4	1.19E-06	6.80E-05	Moliterno	1
223	25/11/2019	21:54:28	40 1/.6/	15 49.40	0.2	4.3	0.4	0.11	163	12	0.7	0.5	1.//E-06	3.92E-04		1
224	27/11/2019	01:22:30	40 28.77	15 32.00	1.0	10.6	0.6	0.08	320	12	0.3	0.0	9.50E-07	7.60E-05	Atena_Lucana	*1
225	27/11/2019	03:12:52	40 20.31 40°29 47	15°37 30	0.1	5.1	0.5	0.22	149	13	0.8	0.2	1.40F-06	2.12E-04	Brienza	
220	29/11/2019	10:14:42	40°28.05	15°42 82	0.4	16.6	0.0	0.02	129	12	0.0	0.1	3.12E-06	1.09E-04	Marsico Nuovo	1
228	05/12/2019	08:42:07	40°11.16	16°02.71	0.3	13.3	0.3	0.06	286	15	1.2	0.4	7.86E-06	5.31E-04	S.Martino dAgri	1
229	07/12/2019	03:56:02	40°20.97	15°42.69	0.3	0.3	0.2	0.08	194	18	0.7	0.2	3.60E-06	7.37E-05	Marsico_Vetere	1
230	07/12/2019	20:51:45	40°29.93	15°37.01	0.1	9.2	0.2	0.42	131	21	0.7	0.2	4.51E-06	4.20E-04	Brienza	1
231	09/12/2019	23:21:22	40°17.18	15°55.74	0.6	9.2	1.3	0.05	175	6	0.1	0.2	4.93E-07	2.86E-05	Grumento_Nova	1
232	11/12/2019	00:40:24	40°29.37	15°38.18	0.1	13.9	0.1	0.25	66	39	2.0	0.4	9.52E-05	6.97E-03	Brienza	DI
233	11/12/2019	23:15:03	40°21.95	15°50.36	0.1	2.3	0.1	0.15	122	26	0.7	0.4	5.37E-06	3.61E-04	Viggiano	1
234	14/12/2019	14:21:41	40°18.08	15°48.02	0.3	6.8	0.2	0.16	221	14	0.9	0.4	1.83E-05	6.75E-04	Tramutola	
235	16/12/2019	07:34:52	40°31.94	15°34.76	0.5	15.1	0.6	0.07	286	10	0.4	0.3	7.34E-07	3.29E-05	Tito	
236	16/12/2019	18:38:57	40°17.89	15°50.62	0.5	5.7	0.4	0.08	217	10	0.6	0.2	4.74E-06	3.02E-04	Grumento_Nova	1
237	16/12/2019	21:51:18	40°29.67	15°47.24	5.8	2.1	4.3	0.01	278	6	-0.1	0.1	2.42E-06	1.62E-04	Marsico_Nuovo	1
238	19/12/2019	13:06:23	40°26.38	15°31.71	0.5	0.5	1.9	0.06	304	9	1.0	0.4	1.25E-05	4.20E-04	Atena_Lucana	*)
239	19/12/2019	15:12:53	40°23.58	15°45.81	4.8	14.3	1.5	0.03	249	6	0.2	0.1	5.57E-07	3.25E-05	Marsico_Vetere	1
240	20/12/2019	22:11:06	40°18.29	15°45.73	0.3	6.3	1.0	0.05	246	12	0.4	0.3	2.77E-06	1.59E-04	Tramutola	1
241	25/12/2019	05:07:33	40°15.83	15°54.86	0.2	3.4	0.5	0.03	125	11	0.2	0.2	2.58E-06	1.96E-04	Grumento_Nova	1
242	26/12/2019	05:36:39	40°15.88	15°54.87	0.1	3.8	0.3	0.06	124	13	0.8	0.4	1.35E-05	7.46E-04	Grumento_Nova	1
243	26/12/2019	09:43:40	40°34.75	15°39.22	0.1	17.3	0.1	0.18	104	44	2.3	0.4	7.33E-05	4.56E-03	l ito	1
244	26/12/2019	09:50:33	40-31.80	15'38.74	1.1	18.7	0.6	0.10	201	10	0.4	0.2	1.22E-06	1.20E-04	I ITO	1

N°	DATA	ORA UTC	LATIT. N	LONG. E	Err. Epic. (km)	PROF. (km)	Err. Prof.	RMS (s)	GAP (°)	Num. Fasi	ML	Err. ML	PGV (m/sec)	PGA (m/sec2)	Epicentro (tav IGM 1:25000)	
245	26/12/2019	10:36:49	40°25.54	15°32.26	2.1	13.7	2.1	0.01	303	7	0.3	0.2	7.48E-07	6.56E-05	Atena_Lucana	
246	26/12/2019	11:51:30	40°34.59	15°39.05	0.1	17.5	0.1	0.19	104	41	1.8	0.4	3.10E-05	2.30E-03	Tito	1
247	27/12/2019	08:18:34	40°21.08	15°54.32	0.2	12.5	0.2	0.10	83	25	0.7	0.3	5.49E-06	3.17E-04	Viggiano	
248	28/12/2019	21.22.14	40 18.00 40°33 66	15 54.71 15°47 35	0.2	4.4	1.6	0.06	122	12	0.8	0.2	7.20E-06	4.95E-04	Pignola	
250	28/12/2019	21:22:14	40°35.67	15°47.24	0.2	17.2	0.2	0.13	134	31	1.3	0.3	4.66E-06	2.60E-04	Potenza	
251	28/12/2019	21:32:55	40°35.52	15°47.52	0.1	16.7	0.2	0.22	97	45	3.1	0.3	3.19E-04	7.92E-03	Potenza	DE
252	28/12/2019	21:35:56	40°34.68	15°46.92	0.3	18.8	0.4	0.19	205	18	1.4	0.2	5.40E-06	2.95E-04	Pignola	
253	28/12/2019	21:37:42	40°34.05	15°49.70	0.2	10.3	0.4	0.18	84	22	0.7	0.2	1.80E-06	5.85E-05	Anzi	1
254	28/12/2019	21:42:58	40°34.63	15°48.19	0.2	14.9	0.3	0.21	106	19	1.1	0.3	2.06E-06	7.75E-05	Pignola	1
255	28/12/2019	21:45:54	40°34.93	15°47.34	0.8	21.3	0.9	0.07	249	8	0.9	0.3	1.63E-06	2.00E-04	Pignola	
256	28/12/2019	21:48:40	40°34.47	15°48.78	0.3	18.3	0.4	0.16	198	15	0.8	0.3	1.28E-06	7.21E-05	Pignola	
258	28/12/2019	21.50.20	40°35.70	15°47.53	0.1	15.0	0.2	0.28	121	42	3.0	0.3	2 44F-04	7.07E-03	Potenza	DE
259	28/12/2019	22:09:49	40°34.99	15°48.07	0.1	16.0	0.2	0.19	112	37	2.0	0.3	2.65E-05	9.30E-04	Pignola	DE
260	29/12/2019	00:00:55	40°34.55	15°48.91	0.5	16.4	0.6	0.27	199	18	0.8	0.2	1.58E-06	5.78E-05	Pignola	
261	29/12/2019	00:37:15	40°35.20	15°47.85	0.1	14.3	0.3	0.19	117	36	1.1	0.3	4.84E-06	1.92E-04	Potenza	
262	29/12/2019	00:47:31	40°31.83	15°49.92	0.2	7.6	0.6	0.09	158	11	0.9	0.2	1.40E-06	7.97E-05	Anzi	
263	29/12/2019	00:58:36	40°35.16	15°48.19	0.3	20.4	0.4	0.16	210	22	1.1	0.2	2.87E-06	1.76E-04	Potenza	1
264	29/12/2019	01:17:09	40°34.37	15°48.73	0.1	13.0	0.3	0.17	97	31	1.0	0.2	2.43E-06	2.20E-04	Pignola	
265	29/12/2019	01:36:17	40°34.55	15°48.36	0.1	14.1	0.2	0.20	216	30	1.2	0.3	3.78E-06	2.56E-04	Pignola	
267	29/12/2019	11.15.34	40°36.79	15°44 93	0.7	23.8	0.7	0.24	183	22	1.3	0.4	2.98E-06	3.43F-04	Potenza	
268	29/12/2019	11:31:49	40°34.28	15°49.15	0.3	12.7	0.4	0.18	91	20	0.9	0.2	2.59E-06	1.36E-04	Pignola	
269	29/12/2019	15:16:00	40°35.70	15°47.64	0.1	16.9	0.3	0.14	117	32	1.1	0.2	3.00E-06	2.64E-04	Potenza	
270	29/12/2019	19:19:54	40°30.94	15°56.10	0.1	4.3	0.2	0.24	161	23	1.2	0.3	5.44E-06	3.64E-04	Anzi	
271	30/12/2019	03:52:51	40°34.04	15°49.30	0.2	13.7	0.3	0.18	88	28	1.2	0.2	5.37E-06	3.00E-04	Pignola	1
272	30/12/2019	07:16:22	40°35.95	15°46.95	0.4	15.0	0.5	0.15	264	15	0.9	0.3	1.81E-06	1.18E-04	Potenza	
273	30/12/2019	07:27:38	40°29.42	15°54.76	0.1	9.3	0.3	0.13	126	20	1.4	0.4	1.24E-05	4.52E-04	Calvello	
274	31/12/2019	19:10:31	40 35.00	15 47.60 15°40 24	0.1	13.2	0.3	0.19	118	40	1.5	0.3	7.15E-06	2.72E-04	Pignola	DE
275	31/12/2019	19:12:10	40 33.74 40°34 36	15 49.54 15°48 68	0.2	11.2	0.4	0.18	97	37	0.5	0.3	1.03E-06	9.06E-05	Pignola	
277	31/12/2019	19:42:20	40°34.50	15°49.37	0.2	13.7	0.3	0.17	91	28	0.5	0.3	8.02E-07	5.27E-05	Pignola	
278	31/12/2019	20:25:35	40°34.96	15°47.57	0.1	14.4	0.2	0.21	118	38	1.3	0.3	5.04E-06	1.93E-04	Pignola	
279	31/12/2019	20:42:06	40°34.70	15°48.16	0.2	16.5	0.3	0.22	107	33	0.6	0.2	1.37E-06	8.19E-05	Pignola	
280	31/12/2019	21:09:00	40°35.03	15°47.58	0.2	15.5	0.3	0.20	119	37	1.4	0.3	7.78E-06	4.50E-04	Potenza	1
281	31/12/2019	21:38:39	40°33.49	15°48.37	0.2	13.9	0.4	0.24	91	33	0.6	0.3	1.12E-06	6.79E-05	Pignola	
282	31/12/2019	22:31:40	40°22.36	15°50.16	0.1	2.2	0.1	0.09	122	22	0.7	0.3	6.48E-06	4.00E-04	Viggiano	
2	02/01/2020	00:16:45	40 16.46 40°35 19	15°48 18	0.3	4.2	0.4	0.08	112	39	0.0	0.3	3.81E.06	1.19E.04	Potenza	
3	02/01/2020	04:13:00	40°34.12	15°48.05	0.3	14.0	0.4	0.23	136	20	0.5	0.3	1.21E.06	8.44E.05	Pignola	
4	02/01/2020	14:42:30	40°34.55	15°47.91	0.1	13.1	0.3	0.16	108	34	1.3	0.3	5.36E.06	3.15E.04	Pignola	
5	02/01/2020	22:44:27	40°16.28	15°55.04	0.2	2.4	0.2	0.06	114	14	0.0	0.4	2.50E.06	1.76E.04	Grumento_Nova	
6	03/01/2020	20:32:31	40°31.65	15°38.50	0.4	15.1	0.5	0.05	203	11	0.3	0.4	1.02E.06	6.70E.05	Tito	1
7	04/01/2020	05:33:50	40°25.61	15°41.95	0.3	14.6	0.4	0.13	163	19	0.6	0.3	1.34E.06	6.69E.05	Brienza	
٥ ٩	04/01/2020	12:52:07	40 32.88	15 33.24		15.1	0.1	0.04	303	41	2.5	0.3	5.33E.04	0.1/E.05	Polla Marsico Vetere	Ы
10	06/01/2020	19.24.40	40 20.02 40°35 09	15 40.01 15°47 27	0.1	15.6	0.1	0.14	124	28	1.2	0.3	3.79E.06	2.45E.02	Potenza	
11	08/01/2020	13:10:51	40°30.12	15°32.59	1.0	1.2	0.8	0.35	318	- 23	1.0	0.4	1.85E.05	1.34E.03	Polla	1
12	08/01/2020	21:22:03	40°34.72	15°57.39	0.2	9.5	0.4	0.16	116	35	1.1	0.3	5.13E.06	2.20E.04	Trivigno	
13	11/01/2020	20:05:11	40°15.17	15°52.28	0.2	4.0	0.3	0.03	152	13	0.6	0.4	7.49E.06	5.16E.04	Grumento_Nova	
14	12/01/2020	08:18:43	40°12.04	15°56.11	0.6	4.8	1.3	0.01	239	5	0.2	0.2	7.57E.07	3.54E.05	Moliterno	
15	13/01/2020	03:06:08	40°30.42	15°37.61	0.4	14.0	0.6	0.07	194	11	0.2	0.2	1.07E.06	9.19E.05	Tito	
16	13/01/2020	03:47:51	40°20.79	15°52.82	0.2	16.5	0.2	0.14	103	23	0.4	0.3	4.31E.06	3.85E.04	Viggiano	
18	18/01/2020	23:02:12	40°30.62	15°55.39	0.3	9.5	0.4	0.14	2/3	19	0.5	0.3	1.35E.06	5.34E.05	Anzi	1
19	18/01/2020	23:02:26	40°29.35	15°54.12	0.1	8.9	0.2	0.13	72	32	1.2	0.3	5.65E.6	2.40E.04	Calvello	
20	18/01/2020	23:02:32	40°31.22	15°56.32	0.4	12.5	0.9	0.07	273	9	1.1	0.2	2.77E.06	9.81E.05	Anzi	
21	19/01/2020	20:17:37	40°30.79	16°05.21	0.2	32.6	0.3	0.22	124	30	1.0	0.3	1.23E.06	3.51E.05	Oliveto_Lucano	1
22	20/01/2020	22:09:59	40°29.47	15°35.41	0.5	14.3	0.4	0.05	289	12	0.2	0.1	7.63E.07	6.47E.05	Brienza	1
23	22/01/2020	06:29:01	40°32.89	15°44.26	0.5	15.0	0.5	0.18	201	18	0.5	0.4	3.02E.06	1.62E.04	Pignola	1
24	22/01/2020	11:20:38	40°26.46	15°39.56	0.4	8.2	0.7	0.03	1/9	11	0.4	0.1	1.38E.06	1.1/E.04	Tramutola	1
26	22/01/2020	16:38:59	40°17.65	15°50.06	0.1	2.0	0.1	0.18	205	13	0.3	0.4	2.21E.06	2.99E.04	Grumento Nova	1
27	22/01/2020	22:49:36	40°17.78	15°50.11	0.1	2.9	0.1	0.13	149	22	0.2	0.4	5.18E.06	4.27E.04	Grumento_Nova	1
28	22/01/2020	23:25:33	40°18.89	15°57.62	0.2	13.7	0.2	0.11	82	22	0.7	0.4	9.77E.06	5.73E.04	Montemurro	
29	23/01/2020	03:38:54	40°20.64	15°43.53	1.7	6.9	3.2	0.03	274	6	0.2	0.2	2.53E.07	1.42E.05	Marsico_Vetere	l

N°	DATA	ORA UTC	LATIT. N	LONG. E	Err. Epic. (km)	PROF. (km)	Err. Prof.	RMS (s)	GAP (°)	Num. Fasi	ML	Err. ML	PGV (m/sec)	PGA (m/sec2)	Epicentro (tav IGM 1:25000)	
30	23/01/2020	15:01:21	40°32.77	15°32.28	0.3	14.1	0.3	0.19	226	21	0.9	0.2	2.86E.06	2.76E.04	PollaŚ	
31	26/01/2020	07:24:51	40°34.29	15°44.89	0.5	0.4	3.0	0.07	282	8	0.2	0.2	2.41E.06	2.64E.04	Pignola	
32	01/02/2020	02:41:55	40°31.21	15°36.28	1.1	9.5	0.9	0.09	254	8	0.3	0.3	2.19E.07	2.51E.05	Tito	
33	03/02/2020	05:25:16	40°12.82	16°03.43	0.9	15.9	0.5	0.05	319	9	0.7	0.3	1.65E.06	9.31E.05	S.Martino dAgri	
34	04/02/2020	11:23:54	40°29.73	16°02.33	1.2	7.5	3.2	0.05	170	8	1.2	0.4	3.72E.06	2.64E.04	Laurenzana	
35	07/02/2020	09:40:25	40°31.03	15°47.59	0.1	16.8	0.2	0.24	67	29	1.1	0.3	5.19E.06	3.57E.04	Pignola\$	
36	07/02/2020	15:15:34	40°38.01	15°59.33	0.4	22.0	0.4	0.21	167	23	0.7	0.2	1.17E.06	7.92E.05	Albano di Lucania\$	
37	07/02/2020	19:23:08	40°11.71	15°56.77	0.4	6.8	0.6	0.03	254	8	0.7	0.2	3.41E.06	1.87E.04	Moliterno	
38	09/02/2020	17:38:29	40°19.02	15°48.90	0.3	-1.4	0.2	0.06	264	8	0.2	0.3	2.83E.06	1.77E.04	Tramutola	*)
39	10/02/2020	15:52:15	40°27.72	15°34.53	0.7	-1.6	0.4	0.19	312	6	1.5	0.4	4.31E.05	8.90E.04	Atena Lucana	DE *)
40	13/02/2020	12:03:21	40°19.02	15°49.81	0.2	2.7	0.3	0.06	168	14	0.3	0.5	8.94F.06	4.69E.04	Grumento Nova	,
41	14/02/2020	02:04:59	40°22.86	15°49.89	1.8	2.8	1.1	0.00	187	8	0.1	0.2	5.76F.07	2.08E.05	Viggiano	
42	14/02/2020	22:50:00	40°16 74	15°56 42	0.6	2.6	0.2	0.02	280	8	0.1	0.2	2 27E 06	1.66F.04	Grumento Nova	
42	15/02/2020	11.51.44	40°16 23	15°55 54	0.0	3.1	1.4	0.02	112	13	0.5	0.2	3 30E 06	3 17E 04	Grumento Nova	
43	21/02/2020	01.19.43	40°31 26	15°39.00	NC	20.6	NC	0.03	180	4	0.1	0.5	9 33E 07	4 83E 05	Tito	
45	21/02/2020	22:24.17	40°10 16	15°56 20	NC	5 2	NC	0.02	281	6	0.7	0.2	3.26F.07	3.38F.05	Moliterno	
46	22/02/2020	13:21.28	40°28.48	15°42 27	0.4	13.4	03	0.02	218	9	0.5	0.2	4.41F.06	2.42F 04	Marsico Nuovo	
40	22/02/2020	13.54.11	40°30 31	15°41 64	1.0	11 1	0.5	0.10	310	6	0.3	0.3	9.43E.07	9 96E 05	Tito	
47	22/02/2020	22.05.42	40 30.31	15°50 11	1.0	20.9	0.0	0.02	2/1	20	0.2	0.2	1 295 06	7 195 05	Albano di Lucania	
40	23/02/2020	10,12,24	40 30.00	15 00.11	0.2	20.0	0.5	0.10	70	41	1.6	0.2	E 02E 0E	1 655 02	Marcico Votoro	DI
49	24/02/2020	19:12:24	40 20.10	15 40.0Z	0.1	1.0	0.1	0.27	/0	41	1.6	0.4	5.02E.05	1.032.03		DI
50	25/02/2020	23:34:09	40°29.38	15 49.71	0.3	0.1	NC 0.2	0.05	1//	9	0.4	0.3	4.81E.06	4.57E.04		
51	27/02/2020	09:49:38	40 17.53	15 50.35	0.2	5.1	0.2	0.03	217	10	0.8	0.4	1.10E.05	7.03E.04	Grumento_Nova	
52	29/02/2020	05:11:51	40°11.09	15*54.97	0.2	3.0	3.2	0.15	259	10	0.7	0.3	2.51E.06	1.60E.04	Moliterno	
53	29/02/2020	07:59:46	40°19.42	15-49.29	0.5	2.9	0.1	0.03	264	8	0.1	0.2	2.5/E.06	2.41E.04	l ramutola	*1
54	02/03/2020	13:08:36	40°25.70°	15'32.13'	0.5	-1.6	0.5	0.18	303	10	1.7	0.4	4.55E-05	1.06E-03	Atena_Lucana	*) *)
55	03/03/2020	09:44:27	40 26.32	15 32.02	2.2	-1.6	2.6	0.23	303	10	1.1	0.4	1.34E-05	4.50E-04	Atena_Lucana	*)
56	04/03/2020	23:47:45	40°22.26	15'53.25'	0.1	3./	0.4	0.19	89	25	0.4	0.3	3.60E-06	1.94E-04	Viggiano	
57	05/03/2020	23:14:35	40°20.58	15'46.28'	0.3	5.4	0.6	0.21	192	14	0.7	0.3	4.11E-06	1.41E-04	Marsico_Vetere	
58	06/03/2020	03:54:41	40.31.17	15'35.88'	2.0	14.6	0.9	0.03	264	6	0.2	0.1	6.11E-07	6.21E-05		
59	06/03/2020	23:40:49	40 11.7	16 2.68	0.8	11.2	0.4	0.04	340	6	0.4	0.1	8.01E-07	5.59E-05	S.Iviartino_d'Agri	
60	09/03/2020	01:24:01	40 21.84	15 52.18	0.1	5.2	0.1	0.20	69	38	1.1	0.3	1.68E-05	1.02E-03	Viggiano	
61	09/03/2020	03:44:10	40°27.69	15'36.34'	0.5	5.5	0.3	0.05	258	12	1.0	0.3	1.28E-05	5.30E-04	Brienza	
62	09/03/2020	03:50:58	40*26.85*	15'36.35'	0.3	4.8	0.4	0.03	276	10	0.2	0.2	3.19E-06	2.85E-04	Brienza	
63	09/03/2020	04:35:56	40-28.02	15-36.64	0.4	5.5	0.3	0.04	269	9	0.1	0.2	2.53E-06	3.03E-04	Brienza	
64	10/03/2020	05:16:29	40°9.34'	15°54.24	0.6	17.3	1.5	0.07	286	12	0.6	0.4	1.32E-06	5.34E-05	Monte_Sirino	
65	10/03/2020	18:10:03	40*21.97	15'50.51	0.3	1.8	0.2	0.03	152	12	0.3	0.2	1.80E-06	9.18E-05	Viggiano	
66	12/03/2020	02:09:09	40.12.36	15.57.33	0.4	11.0	0.4	0.11	238	13	0.4	0.3	1.00E-06	7.48E-05	S.Iviartino_d'Agri	*1
6/	12/03/2020	10:19:35	40°28.83	15'36.83'	0.4	-0.6	0.3	0.35	238	8	0.7	0.2	1.41E-05	4.52E-04	Brienza	*)
68	13/03/2020	07:31:45	40 30.19	15 53.78	0.1	5.9	0.2	0.06	159	12	0.4	0.2	1.42E-06	5.68E-05	Anzi	
69	15/03/2020	17:54:38	40 21.51	15 50.5	0.1	2.3	0.1	0.06	136	1/	0.4	0.2	5.39E-06	4.88E-04	Viggiano	
70	18/03/2020	20:41:48	40 26.17	15 31.65	0.4	11.3	0.6	0.09	305	11	0.5	0.2	2.26E-06	1.51E-04	Atena_Lucana	
/1	19/03/2020	00:14:29	40 10.76	15 54.94	0.2	13.9	0.2	0.14	88	31	1.1	0.5	1.36E-05	7.27E-04	Ivioliterno	
72	19/03/2020	18:15:21	40 27.31	15 31	0.7	14.7	0.5	0.09	307	11	0.4	0.2	1.18E-06	9.04E-05	Atena_Lucana	
/3	20/03/2020	00:40:41	40°33.05	15'32.43	0.7	19.0	0.6	0.04	309	12	0.3	0.3	7.66E-07	5.03E-05	Polla	
74	25/03/2020	01:29:29	40 35.34	15 38.13	0.7	4.4	0.9	0.03	297	7	0.5	0.3	3.45E-06	1.88E-04	Picerno	
75	26/03/2020	18:28:24	40 36.64	15 47.15	0.5	12.0	0.4	0.14	2/4	19	0.6	0.2	9.34E-07	4.14E-05	Potenza	
76	27/03/2020	10:26:52	40 21.44	15 43.83	0.4	1.1	0.2	0.11	21/	12	0.1	0.3	4.53E-07	1.90E-05	Iviarsico_Vetere	
77	27/03/2020	18:05:09	40 24.44	15 39.69	0.4	2.2	0.4	0.02	238	10	0.0	0.2	9.04E-07	3.69E-05	Sala_Consilina	
/8	27/03/2020	21:30:44	40'35.74	15'37.09'	0.7	6.2	0.6	0.02	303	7	0.8	0.2	2.44E-06	1.3/E-04	Picerno	
/9	28/03/2020	06:27:10	40°21.73'	15'43.37'	0.1	0.3	0.1	0.23	82	31	0.6	0.2	2.00E-06	7.49E-05	Iviarsico_Vetere	
80	29/03/2020	17:54:09	40'18.17	15'50.47'	0.5	3.6	0.5	0.00	225	8	0.0	0.5	2.7/E-06	1.33E-04	Grumento_Nova	
81	30/03/2020	07:36:31	40'14.18'	15'5/.//	0.2	8.4	0.2	0.13	132	21	0.7	0.4	5.31E-06	3.59E-04	S.Martino_d'Agri	
82	30/03/2020	17:10:16	40-12.86	15'59.77'	NC	4.7	NC	0.00	360	4	0.1	0	1.05E-06	6.02E-05	S.Martino_d'Agri	
83	31/03/2020	02:39:27	40'35.31'	15'37.17	0.9	5.7	1.0	0.02	297	7	0.1	0.2	8.73E-07	3.97E-05	Picerno	
84	31/03/2020	16:18:31	40 18.85	15 54.75	0.1	1.8	0.1	0.17	133	15	0.1	0.3	2.74E-06	1.43E-04	Grumento_Nova	
	- STUS//070	10.000				- /				-						

Tabella 5. Sismicità localizzata in Val d'Agri secondo il Bollettino ENI nel periodo dal 01/10/2019 - 31/03/2020. Eventi con magnitudo ≥1.5 e con ipocentro all'interno del DI sono evidenziati con il colore del livello di allerta del sistema a semaforo; eventi con epicentro all'interno del DE sono evidenziati in azzurro.

Sulla base delle argomentazioni fatte nel capitolo "Commenti relativi alle incertezze delle localizzazioni ipocentrali di eventi sismici locali e alle implicazioni per il monitoraggio sismico", nel presente rapporto, la SPM inoltra senza ulteriore revisione la magnitudo e le coordinate ipocentrali dei terremoti rilevati e analizzati da ENI. Senza entrare in merito alla questione sulla profondità ipocentrale relativa ai domini definiti negli ILG, in Tabella 5 viene riportato il bollettino ENI (2019, 2020) con evidenziazione in azzurro degli eventi sismici con epicentro all'interno del DE (eventi la cui profondità calcolata da ENI risulta quasi sempre al di sotto del volume del DE).

Eventi sismici contrassegnati con *), spesso localizzati vicino alle località di Brienza e Atena Lucana, sono caratterizzati da profondità molto superficiali, se non negative. ENI sottolinea che tali eventi sono spesso da attribuire agli scoppi in cava.

Nell'ultimo semestre sono stati localizzati quattro ipocentri all'interno del DI (eventi n° 195(2019), n° 200(2019), n° 9(2020) e n° 49(2020) nella Tabella 5). Il terremoto più significativo del 4 Gennaio 2020 ha raggiunto ML=2.5 localizzato al bordo occidentale del DI nel comune di Marsico Vetere. Considerando che nella fase sperimentale gli ILG adottano il sistema decisionale di allerta esclusivamente per le attività di reiniezione dei fluidi nel sottosuolo (con un approccio a semaforo basato su parametri misurati esclusivamente entro un volume di sottosuolo circoscritto nell'intorno del pozzo di reiniezione con un raggio di 5 km) e che gli epicentri dei quattro eventi di livello "giallo" e "arancione" distano più di 25 km dal pozzo di reiniezione CMS, tali eventi non sono stati oggetto di segnalazione al comitato.

Analisi dati pregressi con SC3

Come descritto in dettaglio nel capitolo §Acquisizione dati sismici il sistema di acquisizione e analisi SeisComP3 è attualmente operativo in fase di test su due server temporanei (ridondanti) installati presso la sede del CMS a Bologna. Il sistema è configurato in maniera tale che sia possibile effettuare il monitoraggio sismico dalle sedi esterne, collegandosi al server centrale del CAD-BO.

Ai fini di calibrare i sistemi di *autopicking* e di associazione delle fasi, è indispensabile eseguire dei test iniziali di ottimizzazione del software SC3, per avere un efficiente calcolo automatico della magnitudo e della localizzazione ipocentrale. A tal proposito, dall'archivio dei *datastream* sismici ENI, sono stati selezionati alcuni eventi significativi per valutare differenti modelli di velocità da utilizzare per l'area oggetto di monitoraggio.

Come esempio rappresentativo si riportano di seguito le operazioni fondamentali necessarie per la localizzazione dell'evento sismico di M_L 2.5 verificatosi il 4 Gennaio 2020 delle ore 14:52:50 UTC già citato nel precedente capitolo del presente report.

La localizzazione di un evento sismico è generalmente basata sui tempi di arrivo delle fasi P e S che all'interno di SC3 vengono automaticamente marcate dal modulo "*SCAUTOPICK*" di *autopicking*, sempre in esecuzione durante l'acquisizione dei dati (risultati del *picking* automatico in Figura 24). Tale modulo, chiamato "*SCANLOC*", è stato calibrato per essere efficace nel processo di identificazione preliminare degli eventi sismici che si verificano nell'area oggetto di monitoraggio. Il personale addetto al monitoraggio dovrà revisionare l'evento identificato automaticamente per migliorarne la precisione dei picking automatici ed associando dei livelli di incertezza a tali stime (si veda Figura Figura 26), oltre che definire, se possibile, la polarità dei primi arrivi per la determinazione del meccanismo focale dell'evento sismico.

La fase successiva prevede la rilocalizzazione dell'evento sismico utilizzando dei codici implementati all'interno del software SC3. Allo stato attuale sono stati testati due dei tre codici disponibili nel modulo grafico "SCOLV" *(SeisComp Origin Locater View)* di SC3: LocSAT (Bratt and Nagy, 1991) e Hypo71 (Lee and Lahr, 1972; 1975). Entrambi si servono di un modello di velocità 1D del sottosuolo in input che consente il processo di localizzazione di un evento. Sono stati testati dei modelli di velocità ricostruiti sulla base di studi pregressi effettuati per l'area di studio (Valoroso et al., 2011, Improta et al. 2017). Il tempo di propagazione previsto è quindi calcolato in modo sintetico sulla base del modello di velocità delle onde P ed S definito nella regione in esame. La migliore localizzazione ottenuta in fase di test per questo evento (in termini di media quadratica dei residui sui tempi di arrivo calcolati a tutte le stazioni considerate - RMS Res) è riportata in Figura 25.

Figura 24. Esempio di associazione automatica delle fasi P (primi arrivi) ed S ad un evento locale. Se il tempo di arrivo della fase P è riconosciuto ad almeno 4 stazioni della rete in un intervallo di tempo predefinito il sistema associa un nuovo evento che in seguito viene automaticamente localizzato.

Figura 25. Schermata del modulo SCOLV che riporta la miglior soluzione ottenuta in fase di rilocalizzazione manuale dell'evento sismico M_L 2.5 del 4 Gennaio 2020. In alto a sinistra la mappa con in bianco le stazioni sismiche che hanno contribuito alla localizzazione dell'evento ed in rosso l'epicentro calcolato. In alto al centro la sintesi dei parametri risultati dalla localizzazione. In alto a destra il plot delle travel time stimate per le fasi P ed S ad ogni stazione in funzione della loro distanza dall'epicentro. In basso viene riportata la tabella con la lista di tutti i pick effettuati dall'operatore e le informazioni associate alle stazioni utilizzate e ai residui dei tempi di arrivo calcolati rispetto al modello di velocità utilizzato per localizzare l'evento.

MARE V	A ODEHZ,	distance: 7.6 km, azimuth: 28.7°	
2		Z	21.
COUL	0-	amax: 47125.4 counts mean: 0.0 counts	A State of the second
sts		N	
coun	-50000	amax: 50225.2 counts mean: -0.0 counts	
lts		E	k shiphing
COUL	0-	amax: 31656.1 counts mean: -0.0 counts	
>	2	14:52:00 14:52:15 14:52:30 14:52: 2020-01-04	45 14:53:00 14:53:15 14:53:30 14:53:45 14:54:00 14:54:15 14:54:30 14:54:45
MARE	7.6 km	pmax: 47115.4 counts mean: -0.0 counts	Part Render
FORE	VA 8.5 km	amax: 66860.0 counts mean: 0.0 counts	
MOLE	VA	amax: 31961.8 counts	
√IGE	VA	amax: 13266.3 counts	Barthill Marrows
GRUE	VA	amar: 27937.7 counts	
MOME	VA	amax: 52623.7 counts	
ABRE	VA	amax: 6523.9 counts	Red Martiness
LAUE	VA	amax: 10491.2 counts	
BRIN	VA	amax: 3588.9 counts	
SPIE	VA	amax: 3758.2 counts	
	21.9 km a VA	amax: 3739.2 counts	Po per
TITE		mean: 0.0 counts	POTION

Figura 26. Tramite uno strumento grafico interattivo chiamato SCOLV (SeisComp Origin Locater View), il sismologo può rivedere, revisionare ed integrare i tempi di arrivo automaticamente individuati (pick), rilocalizzare l'evento e calcolare la magnitudo.

Dati GPS

Analisi della qualità del dato

I dati RINEX giornalieri delle stazioni GPS ENI sono stati analizzati con il software TEQC (<u>http://facility.unavco.org/software/teqc</u>), che rappresenta uno standard internazionale per il trattamento in fase di pre-processamento di dati GPS e per la valutazione della loro qualità. A questo scopo, gli indici principalmente utilizzati sono i seguenti (in parentesi sono indicati i valori riscontrati su stazioni di buona qualità):

MP1: *root mean square* (RMS) dato dai *multipath* sulla fase L1, ossia dovuto a riflessioni del segnale radio inviato dai satelliti che influiscono sul corretto calcolo della distanza satellite-ricevitore (0.1-0.5 m);

MP2: RMS dato dai *multipath* sulla fase L2 (0.1 - 0.5 m);

Ricordiamo che prendendo come riferimento la rete IGS dell'International GNSS Service (www.igs.org/network), il 50% delle stazioni IGS ha valori di RMS per MP1 inferiori a 0.4 m e valori di MP2 inferiori a 0.6 m, mentre 2/3 delle stazioni ha valori di MP1 inferiori a 0.5 m e di MP2 inferiori a 0.75 m.

In Figura 27 è mostrato l'andamento nel tempo dei valori di MP1 e MP2 delle 5 stazioni a nostra disposizione negli intervalli temporali in cui ciascuna stazione ha acquisito i dati. In generale per la maggior parte delle stazioni i valori di MP1 e MP2 rientrano negli intervalli che indicano stazioni di buona qualità. Possiamo notare che solo la stazione TLMA sembra essere caratterizzata da valori di MP1 e MP2 leggermente superiori ai valori di riferimento facendo supporre la presenza di elementi riflettenti o di disturbo troppo prossimi allo strumento. A questo scopo, come già affermato nel paragrafo precedente, ulteriori informazioni sulla configurazione dei siti di installazione aiuterebbero nella valutazione di qualità del dato. Infine si può osservare che la stazioni VIG3 mostra un andamento crescente dei valori di MP1 e MP2, che potrebbe essere indice di un aumento costante di vegetazione, o deterioramento della strumentazione. Suggeriamo di controllare e isolare adeguatamente la strumentazione installata al fine di mantenere standard adeguati di acquisizione dei segnali GNSS. Figura 27. Andamento dei valori di MP1 (in nero) e MP2 (in rosso) per ogni misura giornaliera ottenuti dall'analisi dei dati RINEX delle 5 stazioni ENI con il software TEQC. Si tenga conto della diversa scala utilizzata per ciascun sito.

Elaborazione del dato

I dati giornalieri in formato RINEX delle stazioni in Val d'Agri fornite da ENI sono stati elaborati all'interno di una soluzione geodetica più ampia a scala euro-Mediterranea, utilizzando i dati provenienti da più di 3000 stazioni GPS/GNSS attive, presenti sul territorio italiano ed europeo e gestite da enti di ricerca pubblici (es., INGV, Università), enti locali (es. regioni) e privati (es., Leica-Geosystem, GeoTop). In Figura 28 viene mostrata la posizione della rete di stazioni ENI in Val d'Agri rispetto alle altre stazioni pubbliche e private a nostra disposizione che sono state analizzate.

I dati giornalieri in formato RINEX sono stati analizzati seguendo una procedura basata su tre diversi passaggi, come descritto in Serpelloni et al. (2006, 2013, 2016), che consiste in:

- analisi delle fasi, ossia delle osservazioni registrate dalle stazioni GPS di una sotto-rete che include le stazioni ENI in Val d'Agri più altre stazioni GPS permanenti, e realizzazione di una soluzione di rete debolmente vincolata (posizioni, orbite, ecc...),
- combinazione delle soluzioni giornaliere della sotto-rete in questione con le soluzioni di altre sotto-reti processate all'INGV e allineamento delle soluzioni al sistema di riferimento IGS14 e
- analisi delle serie temporali per la stima delle velocità di spostamento e delle incertezze.

Figura 28. Posizione della rete di stazioni GPS installate da ENI (cerchi neri) in prossimità e all' interno della concessione di coltivazione Val d'Agri (poligono nero). I cerchi gialli indicano le stazioni GNSS attive nella regione ed afferenti a diverse tipologie di reti (si veda Devoti et al., 2017). Inset: distribuzione sul territorio italiano delle stazioni GPS analizzate (punti neri) nella soluzione geodetica combinata; il quadrato rosso indica l'area di ingrandimento.

In particolare il processamento iniziale 1) prevede di utilizzare il pacchetto GAMIT del software per analisi dati GPS scientifico denominato GAMIT/GLOBK (http://www-gpsg.mit.edu/~simon/gtgk), adottando gli standard definiti nel contesto della campagna di riprocessamento IGS, "Repro2 campaign" (http://acc.igs.org/reprocess2.html). Questo software contiene una collezione di programmi sviluppati per analizzare i dati registrati da stazioni GPS (e più in generale GNSS, a partire dall'ultima versione) e stimare le posizioni tridimensionali dei punti a terra e delle orbite dei satelliti, i ritardi troposferici e i parametri di orientazione terrestre (EOPs). Il GAMIT utilizza diverse combinazioni lineari delle due fasi registrate (L1 e L2) per generare una soluzione ai minimi quadrati pesati per ogni sessione giornaliera. Il prodotto principale del software GAMIT è quindi una soluzione debolmente vincolata (cioè non ben definita in un sistema di riferimento) per ogni rete (o sotto-rete) analizzata, contenente un set giornaliero di stime di posizioni per ogni sito, i parametri di orientazione terrestre e la matrice di covarianza degli errori associata, oltre ai parametri orbitali e di ritardo troposferico.

Successivamete nella fase 2) è stato utilizzato il pacchetto GLOBK del software GAMIT/GLOBK, che permette di combinare diverse soluzioni debolmente vincolate (ottenute dall'analisi con il software GAMIT), attraverso un algoritmo basato su un filtro di Kalman, e realizzare un'unica soluzione combinata giornaliera definita in un sistema di riferimento comune. Nello specifico, il sistema di riferimento è stato realizzato minimizzando le coordinate e le velocità delle stazioni IGS di riferimento (le cosiddette "IGS *core stations*") a scala globale, stimando i parametri di una trasformazione di Helmert a 7 parametri (3 traslazioni, 3 rotazioni e scala) rispetto alla realizzazione GPS del sistema di riferimento ITRF2014 (Altamimi et al., 2016), noto come IGS14. Il risultato di questo passaggio sono le posizioni tridimensionali e le incertezze per ogni epoca analizzata, per tutte le stazioni analizzate all'INGV.

Infine nella fase 3) le serie temporali delle posizioni delle stazioni, realizzate nel sistema di riferimento IGS14, sono state analizzate al fine di stimare le velocità medie di spostamento nelle tre componenti, est, nord e verticale. La variazione della posizione di una stazione GPS nel tempo, x(t), è stata rappresentata con il seguente modello funzionale:

$$f(t_i) = a_1 + a_2 t_i + a_3 \sin(2\pi t_i) + a_4 \cos(2\pi t_i) + a_5 \sin(4\pi t_i) + [1]$$
$$a_6 \cos(4\pi t_i) + y_t$$

dove a_1 è il bias iniziale, a_2 indica la pendenza della serie, cioè la velocità media di spostamento, i successivi quattro termini indicano le componenti stagionali (annuale e semi-annuale, con il tempo ti espresso in anni) e l'ultimo termine y_t rappresenta la componente casuale. All'interno di questo modello non sono stati considerati eventuali salti di spostamento perché non sono presenti per le stazioni analizzate. L'analisi di questa fase è stata eseguita per tutte le stazioni fornite, tranne che per TEVE per la quale l'intervallo di acquisizione (v. Tabella 4) risulta troppo breve per stimare i parametri del modello [1].

Risultati - Serie temporali di spostamento

Dalla Figura 29 alla Figura 33 sono mostrati gli spostamenti nel tempo (rispetto alle coordinate calcolate per la prima epoca di acquisizione) delle cinque stazione GPS (INN2, MAE1, TEVE, TLMA e VIG3) nelle componenti est, nord e verticale, nel sistema di riferimento IGS14.

Figura 29. Serie temporale di spostamento della stazione INN2 nel sistema di riferimento globale IGS14. Le linee grigie indicano le barre d'errore (1 σ). La linea rossa rappresenta il modello, come definito in [1]. Figura 30. Serie temporale spostamento della di stazione MAE1 nel di riferimento sistema globale IGS14. Le linee grigie indicano le barre d'errore (1o). La linea rossa rappresenta il modello, come definito in [1].

Figura 31. Serie temporale di spostamento della stazione TEVE nel sistema riferimento globale di IGS14. Le linee grigie indicano le barre d'errore La linea (1σ). rossa, sullo centrata zero, mostra come la brevità della serie non permetta ancora di considerare alcun modello funzionale per questo sito.

Figura 32. Serie temporale di spostamento della stazione TLMA nel sistema di riferimento globale IGS14. Le linee grigie indicano le barre d'errore (1σ). La linea rossa rappresenta il modello, come definito in [1].

Figura 33. Serie temporale di spostamento della stazione VIG3 nel sistema di riferimento globale IGS14. Le linee grigie indicano le barre d'errore (1σ). La linea rossa rappresenta il modello, come definito in [1].

Nelle immagini riportate ad ogni spostamento giornaliero (punti blu) è associata un'incertezza corrispondente ad una deviazione standard (1o) e, dove possibile, è riportato il modello funzionale atteso (linea rossa) secondo l'Equazione [1]. Per ciascuna componente est, nord e verticale viene riportata la velocità media di spostamento, 'Slope', con le incertezze formali associate, e i residui rispetto il modello in termini di WRMS (*Weighted Root Mean Square*) e NRMS (*Normalized Root Mean Square*).

L'unica stazione che non è stata analizzata secondo il modello analitico [1] è TEVE (Figura 31) per la quale i pochi dati acquisiti non possono fornire alcuna indicazione sui parametri che descrivono la serie di spostamento.

Per le altre stazioni in generale si osserva un buon accordo tra dato e modello (curva rossa) che tiene conto sia del trend lineare che delle varie componenti stagionali (annuali e semiannuali). Questo confronto serve per capire se siano presenti spostamenti nel tempo evidenti che non si possano riprodurre con una semplice funzione analitica. Per le serie temporali analizzate non si osservano particolari discrepanze che possano indicare la presenza di ulteriori fattori di deformazione diversi da quelli considerati.

È importante considerare che la letteratura scientifica concorda nel definire in 2.5 anni la lunghezza minima di una serie temporale GPS per una stima della velocità media non influenzata dai segnali stagionali (Blewitt and Lavallée, 2002). Questa lunghezza minima aumenta nel caso in cui siano presenti segnali di deformazione dovuti a eventi sismici e/o a fenomeni differenti anche di natura non-tettonica che non vengono adeguatamente modellati, ma questo non riguarda le stazioni analizzate.

Per questa ragione in Tabella 6 sono indicate le velocità orizzontali e verticali, nel sistema di riferimento IGS14, per le sole stazioni MAE1 e VIG3. Relativamente alle incertezze, queste sono state stimate considerando che il rumore nelle serie temporali GPS non è Gaussiano (es., Williams et al., 2004), ma assumendo un modello di tipo *White+Flicker noise*, come descritto in Serpelloni et al. (2013). In Figura 34A è riportato il campo di velocità orizzontale e verticale nel sistema di riferimento globale IGS14 calcolato per tutte le stazioni GNSS presenti nell'area di studio e con almeno 2.5 anni di dati.

	VE (mm/anno)	VN (mm/anno)	S_VE (mm/anno)	S_VN (mm/anno)	Vup (mm/anno)	S_Vup (mm/anno)
MAE1	22.294	18.850	0.238	0.231	0.643	1.804
VIG3	23.556	16.315	0.245	0.305	-4.215	1.355

Tabella 6. Velocità di spostamento, e relative incertezze, delle stazioni MAE1 e VIG3 (in mm/anno). In particolare VE, VN e Vup indicano le velocità nelle componenti est, nord e verticale, rispettivamente, nel sistema di riferimento IGS14 e S_VE, S_VN e S_Vup le relative incertezze.

Campo di velocità

Per monitorare a scala locale il campo di deformazione presente su un'area limitata (ossia in corrispondenza della concessione di coltivazione Val d'Agri), è bene porre le velocità orizzontali GPS così ottenute (rispetto un sistema di riferimento globale, vedi Figura 34A) rispetto un sistema di riferimento locale, ossia rispetto ad un blocco tettonico o una placca tettonica vicina assunta come rigida (*plate-fixed*). Questo permette di evidenziare meglio nell'area di studio possibili gradienti di velocità dell'ordine del mm/anno o inferiori, che possono caratterizzare sia la tettonica attiva sia le deformazioni locali di altra natura. Questo permette di osservare l'andamento regionale del campo di velocità orizzontale che, ai fini del monitoraggio delle deformazioni, ha una duplice utilità: 1- trattandosi di un'area con alto rischio sismico l'andamento regionale può fornire dei vincoli importanti sulle strutture di faglia in gioco e quindi sul ruolo che potrebbe avere il giacimento rispetto ad esse; 2- evidenziare eventuali anomalie locali di deformazione rispetto l'andamento regionale, le cui cause sono poi da indagare con analisi più approfondite.

In questo caso le velocità orizzontali GPS sono state poste rispetto alla placca Eurasia-fissa, i cui parametri del polo di rotazione nel sistema di riferimento globale IGS14 sono riportati in Tabella 7. Per fare ciò viene rimosso dalle velocità assolute le velocità attese dal polo di rotazione specificato in tabella, rimanendo con un campo di velocità residuo rappresentativo dell'andamento cinematico a scala regionale per l'area di studio.

Latitudine (°N)	Longitudine (°E)	σ Lat (°N)	σ Lon (°E)	Ω (nanorad/anno)	$\sigma \Omega$ (nanorad/anno)
55.14	55.14 -98.44		0.15	4.550	0.006

Tabella 7. Parametri del polo di rotazione della placca Eurasiatica nel sistema di riferimento IGS14: posizione del polo (latitudine e longitudine), velocità di rotazione (Ω) in nanoradianti/anno e relative incertezze (σ Lat, σ Lon, $\sigma\Omega$).

In Figura 34B è mostrato il campo di velocità orizzontale (frecce, con ellissi d'errore al livello di confidenza del 95%), nel sistema di riferimento locale (Eurasia-fisso), e verticale (cerchi colorati) nel sistema di riferimento IGS14, in cui in rosso sono indicate le velocità verticali positive (sollevamento) e in blu le velocità verticali negative (subsidenza). Si noti come nel passaggio dal sistema di riferimento globale a quello locale le velocità orizzontali si riducano in intensità di un ordine di grandezza, permettendo di evidenziare gradienti di velocità orizzontali dell'ordine del mm/anno.

In Figura 34 le stazioni ENI (con più di 2.5 anni di dati) sono evidenziate in rosso e mostrano tra loro velocità molto differenti (diversi mm/anno sia in orizzontale che in verticale, v. Tabella 6) nonostante siano distanti solo 6 km tra loro (v. Figura 12). La velocità della stazione MAE1 mostra un andamento coerente con le velocità ottenute dalle stazioni GPS circostanti (es. VIG2 e AGRX) sia in orizzontale che in verticale e questo può indicare una buona qualità e stabilità del sito (come validato dai valori di MP1 e MP2, v. Figura 27).

Per quanto riguarda invece VIG3, la velocità orizzontale e verticale si discostano molto dai valori misurati dalle stazioni GPS circostanti. Questa discrepanza potrebbe essere dovuta a due possibili cause:

- la presenza di una sorgente di deformazione locale che influenza soltanto questo sito, come per esempio una frana. Questa ipotesi per ora non trova un riscontro valido dal momento che non sembrano essere presenti frane attive in quell'area (facendo riferimento alle mappe di frane fornite da ENI).
- 2. Possibile instabilità di sito dovuta alla non corretta monumentazione della stazione (es. pilastro non ancorato in profondità, cedimenti locali)

Per quanto riguarda la prima causa, e tenendo in considerazione che VIG3 è localizzata all'interno del Centro Olii Val d'Agri (COVA), si potrebbe anche ipotizzare come sorgente locale l'attività industriale svolta all'interno di esso, ma le necessarie ulteriori informazioni per validare questa ipotesi saranno disponibili al termine dello stato di emergenza COVID-19, come già concordato con l'operatore.

In generale la rete geodetica GPS ENI, integrata con le misure provenienti dalle stazioni in continuo appartenenti ad altre reti, fornisce un campo di velocità dell'area che non sembra identificare una deformazione localizzata in corrispondenza del giacimento in Val d'Agri. Infatti le componenti orizzontali mostrano un andamento in linea con la tettonica dell'area (eg. Devoti et al., 2011) mentre la componente verticale mostra un sollevamento diffuso lungo la catena appenninica, in accordo con diversi studi che ne attribuiscono la causa a processi naturali (eg. Serpelloni et al., 2013).

Figura 34. Campo di velocità orizzontale (frecce), nel sistema di riferimento globale IGS14 (pannello A) e rispetto alla placca Eurasiatica (pannello B), e verticale (cerchi colorati). Le stazioni ENI con più di 2.5 anni di dati (MAE1 e VIG3) sono evidenziate con la sigla in rosso. Le ellissi d'errore per le componenti orizzontali sono al livello di confidenza del 95%. Si faccia attenzione alla diversa scala per le velocità orizzontali nei due pannelli.

Considerazioni finali

Le stazioni installate da ENI presentano una buona continuità del dato e valori dei parametri MP1 e MP2, rappresentativi di disturbi da multipath, entro gli intervalli che indicano stazioni di buona qualità (Figura 27). Solo per una stazione, TLMA, i valori di MP1 e MP2 sono leggermente superiori ai valori di riferimento facendo supporre la presenza di elementi riflettenti o di disturbo troppo prossimi allo strumento. Inoltre risulta necessario far presente che, nonostante i valori di MP1 e MP2 per VIG3 siano entro i limiti, il loro progressivo aumento negli anni fa sospettare la presenza di un fattore di disturbo in costante aumento come la presenza di vegetazione, oppure un deterioramento della strumentazione. A questo scopo sono necessarie ulteriori informazioni sulla configurazione dei siti di installazione per tutte le stazioni analizzate fornendo strumenti utili nella valutazione di qualità del dato. Suggeriamo dunque di controllare e isolare adeguatamente la strumentazione installata al fine di mantenere standard adeguati di acquisizione dei segnali GPS.

Le serie temporali di spostamento ottenute per le stazioni analizzate non mostrano particolari anomalie rispetto a un modello standard che comprende un trend lineare e delle componenti stagionali. Le stime di velocità orizzontali e verticali, per le stazioni MAE1 e VIG3 che hanno un intervallo temporale sufficiente di dati, mostrano delle differenze significative nonostante la relativa vicinanza (6 km). Si può comunque affermare che MAE1, trovandosi in linea con le velocità ottenute dalle stazioni circostanti e avendo valori di MP1 e MP2 simili a quelli delle migliori stazioni GPS permanenti analizzate all'INGV, sia una stazione di ottima qualità dal punto di vista della ripetibilità e della continuità del dato. VIG3 invece mostra una velocità che si discosta molto dalle velocità delle stazioni GPS per cui l'affidabilità di questo sito deve essere approfondita.

Tuttavia, al fine di identificare la possibile presenza di segnali di deformazione del suolo associati alle attività di coltivazione di idrocarburi in Val d'Agri, è necessario avere una rete più ampia che copra tutto il giacimento. Auspichiamo che l'installazione di tutta la rete (secondo il progetto proposto da ENI, Figura 12) venga realizzato nei tempi più rapidi possibili, tenendo presente che servono almeno 2.5 anni di dati per stimare delle velocità medie affidabili. Inoltre nei prossimi report le velocità GPS saranno integrate con le misure satellitari SAR per validare le osservazioni ottenute con le due tecniche e quindi poter discriminare se eventuali anomalie possano essere dovute alla specifica tecnica oppure a fenomeni locali.

Dati InSAR

Introduzione

Il monitoraggio delle deformazioni del suolo nella zona di concessione di coltivazione di idrocarburi gestita da Eni in Val d'Agri, è stato effettuato, per conto del concessionario, in collaborazione da E-Geos, società di Telespazio, ed il Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT). Sono stati utilizzati dati in banda C acquisiti dalle missioni Radarsat 1/2 dell'Agenzia Spaziale Canadese (CSA) e Sentinel-1 dell'Agenzia Spaziale Europea (ESA) elaborati con tecniche di Interferometria SAR (InSAR) multi-temporali SBAS (Berardino et al., 2002) e PSP-IFSAR (Costantini et al., 2008).

I dati utilizzati coprono l'intervallo temporale 2003-2018, conformemente a quanto riportato negli ILG, che raccomandano "l'utilizzo di misure InSAR effettuate su dati di archivio acquisiti possibilmente negli ultimi 15-20 anni, e comunque relativi almeno agli ultimi 10 anni,".

A differenza dei dati Radarsat, la cui distribuzione e vendita è gestita privatamente da CSA sia per fini scientifici che commerciali, le immagini acquisite dalle missioni Sentinel-1 sono disponibili online e possono essere scaricate in maniera gratuita da chiunque ne richieda l'accesso. Tale caratteristica "*open-access*", unitamente alle peculiarità intrinseche del dato, quali l'ampia copertura spaziale di circa 250 km ed il tempo di rivisita di 6 giorni, rendono i dati Sentinel-1 uno strumento utilissimo oltre che per finalità scientifiche anche per la fornitura di servizi basati su dati satellitari.

Per tali ragioni l'Istituto Nazionale di Geofisica e Vulcanologia (INGV), si è avvalso dell'utilizzo dei prodotti forniti dalle missioni Sentinel-1 per l'analisi INSAR delle deformazioni del suolo in Val d'Agri e la validazione dei risultati mostrati nella relazione tecnica di E-Geos/CNIT.

Dataset

Il dataset Sentinel-1 elaborato consiste di 234 immagini acquisite in orbita ascendente con un angolo di incidenza di circa 33° ed un angolo di azimuth di circa 13°. L'intervallo temporale coperto va da Ottobre 2014 a Dicembre 2019, coerentemente con quello del dataset Sentinel-1 mostrato nella relazione tecnica di E-geos/CNIT. I dati sono stati elaborati mediante la tecnica interferometrica multi-passaggio nota come *Interferometric Point Target Analysis* (IPTA) (Werner et al., 2003). L'utilizzo di una tecnica diversa da quella utilizzata dal concessionario è di fondamentale importanza per verificare la consistenza dei risultati. Le immagini sono stati mediate a circa 90 m per ridurre lo *speckle noise* applicando fattori di *multilook* di 24 per la direzione *range* e 6 per la direzione *azimuth*. La componente topografica è stata rimossa mediante il DEM a 90 m fornito dalla missione SRTM. Sono stati quindi stimati gli interferogrammi

imponendo soglie massime per la baseline perpendicolari e temporali pari a 70 m e 85 giorni. Tale scelta ha restituito una fitta rete di 1695 interferogrammi mostrata in Figura 35. In aree caratterizzate da una topografia complessa è necessario avere una rete ridondante di dati a causa dei molteplici fenomeni che possono inficiare alcuni di essi come la presenza di effetti troposferici o vegetazione particolarmente fitta e copertura nevosa in determinati periodi dell'anno che sono causa di fenomeni di decorrelazione temporale del segnale SAR. Gli interferogrammi calcolati sono stati quindi campionati in corrispondenza di point target selezionati con criterio a soglia di coerenza ed è stata utilizzata la *Singular Value Decomposition* per stimare trend di deformazione e serie temporali di spostamento.

Figura 35. Rete di interferogrammi ottenuta con i criteri applicati nel processing INGV.

Risultati

Analisi su larga scala

Coerentemente con quanto riportato nella relazione tecnica di E-geos/CNIT, si è scelto di presentare i risultati differenziando l'analisi a larga scala da quella a scala locale. L'analisi InSAR ad una scala tale da coprire l'intera zona di concessione non ha mostrato significativi trend deformativi benché la copertura del segnale in corrispondenza di alcuni pozzi non sia ottimale a causa di fenomeni di de-correlazione temporale (Figura 36). L'interpretazione del dato richiede particolare attenzione. Le misure ottenute sono infatti la combinazione del campo di spostamento totale proiettata lungo la linea di vista, *Line-of-Sight* (LoS), del sensore che acquisisce le immagini. In orbita ascendente, ovvero quella utilizzata in questa analisi, un segnale deformativo in avvicinamento al sensore è tradotto con un valore LoS positivo e viceversa per un segnale in allontanamento. Inoltre le stime di deformazione ottenute mediante analisi InSAR sono relative ad una data ed un punto di riferimento assunto stabile

Figura 36. Velocità di deformazione del terreno ottenuta tramite analisi InSAR. Le misure ottenute sono proiettate lungo la LoS del sensore Sentinel-1. I quadrati bianchi rappresentano i pozzi all'interno della zona di concessione (poligono rosso). La stella nera rappresenta il punto di riferimento delle stime InSAR. all'interno del frame. Abbiamo scelto qui di utilizzare lo stesso punto di riferimento utilizzato dal concessionario posizionato nel comune di Armento (PZ).

Analisi su piccola scala

Riducendo la scala di indagine, è possibile rilevare alcuni segnali deformativi molto localizzati, prevalentemente dovuti a fenomeni franosi già noti. In questo report sono mostrati i risultati in 3 aree individuate nei pressi dei comuni di Montemurro, Corleto Perticara e Stigliano.

In Figura 37 si riportano le mappe di velocità di deformazione stimate nelle 3 aree in analisi. Il comune di Montemurro è interessato da un fenomeno franoso approssimativamente in direzione SE-NW, individuato e mostrato anche nella relazione tecnica di E-geos/CNIT. Coerentemente con la geometria di acquisizione ascendente e la direzione del movimento del corpo di frana, in avvicinamento al sensore, il segnale SAR risulta positivo in LoS con velocità di picco di circa 5 mm/anno.

Per ciò che concerne i comuni di Corleto Perticara e Stigliano, essi sono entrambi interessati situati in corrispondenza di cime montuose ed interessati da significativi fenomeni franosi in direzione quasi puramente W-E per Corleto Perticara ed approssimativamente SW-NE, che si traduce per entrambi in un segnale negativo nell'analisi InSAR.

Come emerge dalle mappe di velocità, le velocità di scivolamento dei corpi di frana raggiungono picchi di circa 1 cm/anno per Corleto Perticara e 2.5 cm/anno per Stigliano, interessando, in quest'ultimo caso, anche una parte del territorio comunale (Figura 38).

Figura 37. Mappe di velocità di deformazione InSAR stimate lungo la LoS. Il cerchio bianco evidenzia le aree in deformazione individuate nei pressi dei comuni di Montemurro (A), Corleto Perticara (B) e Stigliano (C), mentre le frecce indicano

approssimativamente la direzione di scivolamento.

Figura 38. Visione 3D della frana di Stigliano.

Figura 39. Serie temporali InSAR estratte da 3 punti nelle aree in deformazione di Montemurro (A), Corleto Perticara (B) e Stigliano (C). In Figura 39 sono invece mostrate le serie temporali di target in corrispondenza dei fenomeni franosi osservati. Al netto delle oscillazioni stagionali, sono ben visibili i trend deformativi in tutte e 3 le aree. Nell'intervallo considerato, circa 5 anni, si registrano circa 2-3 cm di deformazione accumulata nelle aree di Montemurro e Corleto Perticara e quasi 10 cm per la frana di Stigliano.

Confronto tra elaborazioni INGV e quello fornito dal concessionario

Nonostante l'utilizzo di tecniche differenti i risultati in termini di trend e serie storiche di deformazione del terreno hanno mostrato risultati consistenti tra loro sia nell'analisi su larga scala che su piccola scala.

L'analisi InSAR effettuata da INGV ha di fatto confermato la sostanziale mancanza di deformazioni del suolo indotte dalle attività di coltivazione di idrocarburi nella concessione di Val d'Agri, documentata nella relazione del concessionario. L'analisi su piccola scala ha permesso di rilevare alcuni fenomeni di natura franosa nelle aree di Montemurro, Corleto Perticara e Stigliano, già note e comunque chiaramente indipendenti dalle attività estrattive. Il trend deformativo rilevato nei pressi del comune di Montemurro è sostanzialmente in accordo con quanto mostrato nel report del concessionario nelle cui serie temporali appare maggiormente filtrata la componente stagionale.

Il comune di Marsico Nuovo, mostrato nel report del concessionario non è invece mostrato qui perché fuori dalla copertura del dato utilizzato.

E' importante rimarcare come l'analisi InSAR effettuata dall'INGV sia del tutto indipendente da quella del concessionario (effettuata dal consorzio E-geos/CNIT) e differente nella modalità di trattamento del dato. L'utilizzo di algoritmo e parametri di data processing differenti restituiscono tuttavia risultati e valori misurati coerenti tra loro validandone e rafforzandone l'affidabilità.

Comunicazione e Disseminazione

Uno dei princìpi fondamentali degli ILG risiede nell'intenzione di garantire trasparenza di informazioni nell'ambito della sicurezza e del monitoraggio delle attività antropiche. Grande attenzione viene riservata alla disseminazione e comunicazione dei risultati dei monitoraggi, sia nei confronti delle Istituzioni coinvolte, sia nei confronti del pubblico generico.

Sulla base delle indicazioni chiaramente definite al capitolo 8 degli ILG, è in corso di realizzazione un sito web dedicato alla disseminazione delle informazioni sulle attività in corso e sui risultati del monitoraggio <u>http://cms.ingv.it</u>.

Lo stesso indirizzo sarà raggiungibile anche dal portale generale dell'INGV http://www.ingv.it dal menù *Risorse e Servizi - Centri* secondo il layout grafico INGV.

Lo schema concettuale del sito, conforme alle direttive ILG, è presentato nella Figura 41.

Figura 40. Home page del sito cms.ingv.it

Figura 41. Mappa analitica del sito web del CMS. La lista dei contenuti è conforme a quanto espressamente previsto dagli ILG. Relativamente alla sperimentazione Val d'Agri sono attualmente pubblicati alcuni documenti già approvati e sottoscritti: Accordo Quadro, Funzionamento del Comitato, Protocollo di Trasmissione Dati (Figura 42).

E' stata parzialmente popolata la sezione FAQ che dovrà ospitare anche una sezione di infografica (Figura 43).

Figura 43. Screenshot pagina web del CMS.

Road map

Concordemente con quanto previsto dagli ILG in merito agli incarichi della SPM e dal documento Allegato 1 all'AQ, le attività di monitoraggio previste per il successivo semestre si concentreranno principalmente sulle funzioni seguenti:

Redazione mansionari e protocolli operativi

E' stata predisposta una bozza del Mansionario che regolerà l'operato dei turnisti e dei reperibili durante il monitoraggio h24 a regime. Il testo finale dovrà essere approvato dai vertici dell'INGV e l'assetto definitivo verrà preceduto da un periodo di test presso il CAD-BO, presumibilmente della durata di alcune settimane.

Analisi delle deformazioni del suolo

Dati mancanti non ancora forniti che sarebbero utili ai fini del monitoraggio:

- Log-file delle stazioni GNSS in formato IGS, e se non disponibile in formato tabellare, con indicazioni della strumentazione installate (ricevitore, antenna, altezza della antenna, eventuale duomo)
- Monografie o schede relative alle stazioni GNSS installate
- Eventuali prodotti geodetici già elaborati come serie temporali di spostamento del suolo.

Mentre per le serie sismiche sono essenziali i dati puntuali per la definizioni dei parametri di interesse, l'elaborazione delle serie temporali di deformazione acquista affidabilità se è garantita continuità di osservazioni, soprattutto se la deformazione attesa è dell'ordine di valori sub-centimetrici.

Prevediamo quindi di configurare uno standard di elaborazione dei dati provenienti dalla rete CGPS ed elaborazioni di immagini da satellite nel corso dei mesi a venire che possa usufruire di opportuni dataset di misure.

Popolamento e pubblicazione online del sito Web

Il sito Web <u>http://cms.ingv.it</u> è in corso di perfezionamento e di adeguamento al layout INGV. Prevediamo di pubblicare sia le informazioni generali che riguardano gli ILG, sia quelle specifiche relative ad ogni sperimentazione entro poche settimane, corredate di mappe, grafici, infografica e reportistica.

Evoluzione dell'infrastruttura informatica

Manutenzione alla infrastruttura di acquisizione dati ed elaborazione che ospita SC3.

Ottimizzazione dell'infrastruttura esistente.

Implementazione di server di calcolo virtuale per HPC nell'infrastruttura esistente.
Glossario

AQ:	Accordo Quadro
CAD-BO:	Centro Acquisizione Dati - Bologna
CIRM:	Commissione per gli Idrocarburi e le Risorse Minerarie
CMS:	Centro di Monitoraggio per le attività di Sottosuolo
COVA:	Centro Olii Val d'Agri
DE:	Dominio Esteso
DI:	Dominio Interno
Enterprise:	server acquisizione dati CAD-BO
GNSS:	Global Navigation Satellite System
GPS:	Global Positioning System
IGS:	International GNSS Service
ILG:	Indirizzi e Linee Guida per il Monitoraggio della sismicità delle
	Deformazioni del Suolo e delle pressioni di poro nell'ambito delle
	attività antropiche
Insar:	Interferometric SAR
INGV:	Istituto Nazionale di Geofisica e Vulcanologia
IV:	Sigla rete (NW-Code) RSN (INGV)
MiSE:	Ministero dello Sviluppo Economico
ML:	Magnitudo Locale
Mw:	Magnitudo momento
NRL:	Library of Nominal Responses for Seismic Instruments
NW:	Network
ONT:	Osservatorio Nazionale Terremoti (INGV)
PGA:	Peak Ground Acceleration
PGV:	Peak Ground Velocity
RB:	Regione Basilicata
RSN:	Rete Sismica Nazionale (INGV)
SAR:	Synthetic Aperture Radar
SC3:	SeisComP3
SCANLOC:	Modulo SC3
SCART:	Modulo SC3
SCOLV:	Modulo SC3
SCRTTV:	Modulo SC3
SPM:	Struttura Preposta al Monitoraggio
Spok:	macchina del CAD-BO
Startrek:	macchina del CAD-BO
VA:	Val d'Agri
WRMS:	Weighted Root Mean Square

Bibliografia

Altamimi, Z., Rebischung, P., Métivier, L., Collilieux, X. (2016): ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res-Sol Ea 121, 6109–6131. doi:10.1002/2016JB013098.

Bakun W.H. and Joyner W.B. (1984): The ML scale in Central California Bulletin of the Seismological Society of America (1984) 74 (5): 1827–1843.

Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002), A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens., 40:11, 2375-2383.

Blewitt, G., and D. Lavallee (2002): Effect of annual signals on geodetic velocity, J. Geophys. Res., 107(B7), 2145, doi:10.1029/2001JB000570.

Bollettino ENI (2019): Bollettino microsismico Val d'Agri: Analisi dei segnali, gennaio - dicembre 2019. ENI, Servizio Geologia e Geofisica, Unità GEOM - Geodinamica e Monitoraggio geofisico. Doc. N° GEOM-2019001-MS-SAL-12, 86 pp.

Bollettino ENI (2020): Bollettino microsismico Val d'Agri: Analisi dei segnali, gennaio - marzo 2020. ENI, Servizio Geologia e Geofisica, Unità GEOM - Geodinamica e Monitoraggio geofisico. Doc. N° GEOM-2020025-MS-SAL-03 , 38 pp.

Bormann, P. (2012): Magnitude calibration formulas and tables, comments on their use and complementary data. - In: Bormann, P. (Ed.), *New Manual of Seismological Observatory Practice 2 (NMSOP-2)*, Potsdam: GFZ, pp. 1–19.DOI: http://doi.org/10.2312/GFZ.NMSOP-2_DS_3.1.

Bratt S.R. and Nagy W. (1991): The LocSAT Program, Science Applications International Corporation, San Diego.

Braun T., S. Danesi, D. Famiani (2019): Relazione semestrale 2019/I, Progetto di Monitoraggio concessione Val d'Agri. 47 pp.

Braun T., S. Danesi, and A. Morelli (2019): Application of monitoring guidelines to induced seismicity in Italy. J. Seismology. 10.1007/s10950-019-09901-7.

Costantini M., S. Falco, F. Malvarosa, F. Minati (2008) "A new method for identification and analysis of persistent scatterers in series of SAR images," in *Proc. Int. Geosci. Remote Sensing Symp.* (IGARSS), Boston MA, USA, 7-11 July 2008, pp. 449-452.

Devoti R., Esposito A., Pietrantonio G., Pisani A.R., Riguzzi F. (2011): Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary, Earth and Planetary Science Letters, 311 (3-4), 230-241.

Devoti, R., N. D'Agostino, E. Serpelloni et al. (2017): A Combined Velocity Field of the Mediterranean Region, Annals of Geophys., 60(2), doi:10.4401/ag-7059.

Garcia-Aristizabal A., S. Danesi, T. Braun, M. Anselmi, L. Zaccarelli, D. Famiani and A. Morelli (2020): Epistemic uncertainties in local earthquake locations and implications for managing induced seismicity. Bull. Seismol. Soc. Am., submitted.

ILG (2014): Dialuce, G., Chiarabba, C., Di Bucci, D., Doglioni, C., Gasparini, P., Lanari, R., Priolo, E., Zollo, A., (2014). Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell'ambito delle attività antropiche. GdL MISE, Roma. unmig.mise.gov.it/unmig/agenda/upload/85_238.pdf. (ultimo accesso Ottobre 2019).

Improta L., Bagh S., De Gori P., Valoroso L., Pastori M., Piccinini D., ... Buttinelli, M. (2017): Reservoir Structure and Wastewater-Induced Seismicity at the Val d'Agri Oilfield (Italy) Shown by Three-Dimensional Vp and Vp/Vs Local Earthquake Tomography. Journal of Geophysical Research: Solid Earth, 122(11), 9050-9082.

Lee W.H.K., Lahr J.C. (1972): HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geol. Survey Open File Rep. 72-224, doi:10.3133/ofr72224.

Lee, W.H.K., Lahr J.C. (1975). HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geol. Survey Open File Rep. 75-311, doi:10.3133/ofr75311.

Seed Manual (2012): Standard for the Exchange of Earthquake Data, SEED Format Version 2.4, August, 2012. Ahern and Dost (eds.). <u>http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf</u>

Serpelloni, E., Casula, G., Galvani, A., Anzidei, M., Baldi, P., (2006): Data analysis of permanent GPS networks in Italy and surrounding regions: application of a distributed processing approach. Ann Geophys-Italy 49, 897–928.

Serpelloni, E., C. Faccenna, G. Spada, D. Dong, and S. D. P. Williams (2013): Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary, J. Geophys. Res., 118(11), 6003–6024, doi:10.1002/2013JB010102.

Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R.A. (2016): Kinematics, seismotectonics and seismic potential of the eastern sector of the European Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181, doi:10.1016/j.tecto.2016.09.026.

Valoroso, L., Improta, L., De Gori, P., Chiarabba, C. (2011): Upper crustal structure, seismicity and pore pressure variations in an extensional seismic belt through 3D and 4D Vp and Vp/Vs models: The example of the Val d'Agri area (Southern Italy). Journal of Geophysical Research, 116, B07303. <u>https://doi.org/10.1029/2010JB007661</u>

Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. (2003) Interferometric point target analysis for deformation mapping. In IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway, NJ, USA, 2003; Volume 7, pp. 4362–4364.

Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. Johnson (2004): Error analysis of continuous GPS position time series, J. Geophys. Res., 109, B03412, doi:10.1029/2003JB002741.

Elenco delle figure

FIGURA 1. I CENTRI COSTITUITI ALL'INTERNO DELL'INGV.	14
Figura 2. Possibili scenari di emergenza di competenza CMS nel contesto di un'emergenza di Ente.	16
FIGURA 3. INTERAZIONE PER LIVELLI DI COMANDO NEL CASO DI SCENARIO A1, OVVERO EVENTO DI MAGNITUDO	17
FIGURA 4. DIAGRAMMI DI FLUSSO CHE DESCRIVONO LE ATTIVITÀ DEL TURNISTA SISMOLOGO NEL CASO DI SITUAZIONE ORDINARIA (GREEN) E IN CASO DI ALLERTA (YELLOW) IN ACCORDO CON QUANTO PREVISTO DAGLI ILG. LA DESCRIZIONE ANALITICA DELLE MANSIONI DELL'ANALISTA IN TURNO PRESSO IL CENTRO DI ACQUISIZIONE DATI È RIPORTATA NEI MANSIONARI IN CORSO DI REDAZIONE E SOGGETTI ALL'APPROVAZIONE DEL CDA DELL'INGV.	17
Figura 5. Mappa delle stazioni sismiche della Rete Sismica Nazionale INGV parzialmente già integrate nel sistema di acquisizione del CAD-BO per la localizzazione degli eventi locali e regionali.	19
FIGURA 6. INCONTRO ENI-INGV 14 FEBBRAIO 2020.	21
Figura 7. Rete sismica ENI - registrazione della velocità del moto del suolo. *) in data 18/12/2019, causa cavo difettoso, il velocimetro della stazione PADE non registra più correttamente.	23
FIGURA 8. RETE SISMICA ENI - REGISTRAZIONE DELL'ACCELERAZIONE DEL MOTO DEL SUOLO. IN ATTESA DEL SITO DEFINITIVO, ATTUALMENTE LA STAZIONE MOME NON È DOTATA DI UN SENSORE ACCELEROMETRICO.	23
Figura 9. Architettura CAD-BO.	24
FIGURA 10. FLUSSO DEI DATI SISMICI DALLE SINGOLI RETI A SOLGEO CHE INOLTRA I DATI ALLE SALE DI CONTROLLO DEI CONCESSIONARI E DEL CMS.	26
FIGURA 11. ESEMPIO DI CREAZIONE MANUALE DI RISPOSTA DELLO STRUMENTO TRAMITE IL PORTALE SMP (STATION MANAGEMENT POOL) DI GEMPA (HTTPS://SMP.GEMPA.DE).	29
FIGURA 12. RETE DI MONITORAGGIO GEODETICO PER LA CONCESSIONE VAL D'AGRI IN FASE DI REALIZZAZIONE DA PARTE DI ENI, (IMMAGINE FORNITA GENTILMENTE DA ENI).	30
FIGURA 13. STAZIONE CGPS VIG3: A DESTRA ANTENNA TOPCON MONUMENTATA SU PILASTRO E ALIMENTATA DA CORRENTE ELETTRICA A TENSIONE COSTANTE, AL CENTRO È POSIZIONATO IL CORNER REFLECTOR SAR VALIDO PER ENTRAMBE LE ORBITE DI ACQUISIZIONE SATELLITARE, (FOTO FORNITA GENTILMENTE DA ENI).	32
FIGURA 14. CONNESSIONI TELEMATICHE (IN MODALITÀ SSH) DA SEDI INGV ESTERNE.	34
FIGURA 15. MAPPA DEGLI EVENTI DEFINITI "LOCALI" CON EPICENTRI ALL'INTERNO DELLE AREE CON RAGGIO DI CA. 10 KM INTORNO ALLE SINGOLE STAZIONI DELLA RETE SISMICA ENI.	35
FIGURA 16. EVENTO SISMICO DI M1.9 DEL 22/07/2019 CON EPICENTRO ALL'INTERNO DEL DI E PROFONDITÀ IPOCENTRALE FUORI DAL DI.	36
FIGURA 17. ALBERO LOGICO PER LA MODELLAZIONE DELL'INCERTEZZA EPISTEMICA. (GARCIA-ARISTIZABAL ET AL., 2020, MODIFICATO)	37
Figura 18. Ipocentri dei terremoti (96 soluzioni) ottenuti per l'evento del 22 luglio 2019 (00:48) utilizzando le possibili configurazioni mostrate nella Figura 17. (a) Vista mappa (i punti blu indicano gli epicentri, i triangoli invertiti le stazioni sismiche e i rettangoli rossi e grigi sono rispettivamente i domini di monitoraggio DE e DI; (b) Sezione trasversale A-A (EW); (c) sezione trasversale B-B '(NS). (Garcia-Aristizabal et al., 2020)	38
Figura 19. Livelli di allerta del sistema a semaforo, definiti su base dei parametri Mmax, PGA,	
PGV. FIGURA 20. IPOCENTRI (2001 - 09/2019) REGISTRATI DALLA RETE ENI NELL'AREA DI PRODUZIONE ENI IN	39
va, illustrati in mappa (a) e in profilo (b). Le zone confinate da linee blu e rossa	

RAPPRESENTANO RISPETTIVAMENTE I CONFINI DEL DI E DE. EVENTI SONO PLOTTATI DA CERCHI E ASTERISCHI COLORATI, SECONDO LA LORO MAGNITUDO (VEDI LEGENDA). PI= PERTUSILLO INVASO, CM2, POZZO COSTA MOLINA 2 PER DI REINIEZIONE DELLE ACQUE DI STRATO. 40 FIGURA 21, ML IN FUNZIONE DI PGV E PROFONDITÀ PER GLI EVENTI SISMICI LOCALIZZATI IN VA DA ENI NEL PERIODO 2001 - 09/2019 (DATASET ILLUSTRATO IN FIGURA 20). 42 FIGURA 22. MAGNITUDO IN FUNZIONE DELLA PGV PER LO STESSO DATASET DI CUI SOPRA (FIGURA 21), RELATIVO ALLE SOGLIE DEL SISTEMA A SEMAFORO DEFINITE NEGLI ILG. LA SISMICITÀ CON epicentro all'interno di un'area di 100 km² intorno al pozzo CM2 è illustrata con SIMBOLI BIANCHI. 43 FIGURA 23. EPICENTRI LOCALIZZATI IN VA DAL CONCESSIONARIO DALLA RETE SISMICA ENI: I CERCHI ML<2.2) E GLI ASTERISCHI (ML≥2.2) INDICANO GLI EPICENTRI NEL PERIODO 2001 - 09/2019 (GRIGIO) E 10/2019-03/2020 (GIALLO), VEDI TABELLA 5. ΔΔ FIGURA 24. ESEMPIO DI ASSOCIAZIONE AUTOMATICA DELLE FASI P (PRIMI ARRIVI) ED S AD UN EVENTO locale. Se il tempo di arrivo della fase P è riconosciuto ad almeno 4 stazioni della RETE IN UN INTERVALLO DI TEMPO PREDEFINITO IL SISTEMA ASSOCIA UN NUOVO EVENTO CHE IN SEGUITO VIENE AUTOMATICAMENTE LOCALIZZATO. 19 FIGURA 25. SCHERMATA DEL MODULO SCOLV CHE RIPORTA LA MIGLIOR SOLUZIONE OTTENUTA IN FASE DI Rilocalizzazione manuale dell'evento sismico M_1 2.5 del 4 Gennaio 2020. In alto a SINISTRA LA MAPPA CON IN BIANCO LE STAZIONI SISMICHE CHE HANNO CONTRIBUITO ALLA LOCALIZZAZIONE DELL'EVENTO ED IN ROSSO L'EPICENTRO CALCOLATO. IN ALTO AL CENTRO LA SINTESI DEI PARAMETRI RISULTATI DALLA LOCALIZZAZIONE. ÎN ALTO A DESTRA IL PLOT DELLE TRAVEL TIME STIMATE PER LE FASI P ED S AD OGNI STAZIONE IN FUNZIONE DELLA LORO DISTANZA DALL'EPICENTRO. IN BASSO VIENE RIPORTATA LA TABELLA CON LA LISTA DI TUTTI I PICK EFFETTUATI DALL'OPERATORE E LE INFORMAZIONI ASSOCIATE ALLE STAZIONI UTILIZZATE E AI RESIDUI DEI TEMPI DI ARRIVO CALCOLATI RISPETTO AL MODELLO DI VELOCITÀ UTILIZZATO PER LOCALIZZARE L'EVENTO. 50 FIGURA 26. TRAMITE UNO STRUMENTO GRAFICO INTERATTIVO CHIAMATO SCOLV (SEISCOMP ORIGIN LOCATER VIEW), IL SISMOLOGO PUÒ RIVEDERE, REVISIONARE ED INTEGRARE I TEMPI DI ARRIVO AUTOMATICAMENTE INDIVIDUATI (PICK), RILOCALIZZARE L'EVENTO E CALCOLARE LA MAGNITUDO. 50 FIGURA 27. ANDAMENTO DEI VALORI DI MP1 (IN NERO) E MP2 (IN ROSSO) PER OGNI MISURA GIORNALIERA OTTENUTI DALL'ANALISI DEI DATI RINEX DELLE 5 STAZIONI ENI CON IL SOFTWARE TEOC. SI TENGA CONTO DELLA DIVERSA SCALA UTILIZZATA PER CIASCUN SITO. 52 FIGURA 28. POSIZIONE DELLA RETE DI STAZIONI GPS INSTALLATE DA ENI (CERCHI NERI) IN PROSSIMITÀ E ALL' INTERNO DELLA CONCESSIONE DI COLTIVAZIONE VAL D'AGRI (POLIGONO NERO). I CERCHI GIALLI INDICANO LE STAZIONI GNSS ATTIVE NELLA REGIONE ED AFFERENTI A DIVERSE TIPOLOGIE DI RETI (SI VEDA DEVOTI ET AL., 2017). INSET: DISTRIBUZIONE SUL TERRITORIO ITALIANO DELLE STAZIONI GPS ANALIZZATE (PUNTI NERI) NELLA SOLUZIONE GEODETICA COMBINATA; IL QUADRATO ROSSO INDICA L'AREA DI INGRANDIMENTO. 53 FIGURA 29. SERIE TEMPORALE DI SPOSTAMENTO DELLA STAZIONE INN2 NEL SISTEMA DI RIFERIMENTO globale IGS14. Le linee grigie indicano le barre d'errore (1Σ) . La linea rossa RAPPRESENTA IL MODELLO, COME DEFINITO IN [1]. 55 FIGURA 30. SERIE TEMPORALE DI SPOSTAMENTO DELLA STAZIONE MAE1 NEL SISTEMA DI RIFERIMENTO globale IGS14. Le linee grigie indicano le barre d'errore (1 Σ). La linea rossa RAPPRESENTA IL MODELLO, COME DEFINITO IN [1]. 56 FIGURA 31. SERIE TEMPORALE DI SPOSTAMENTO DELLA STAZIONE TEVE NEL SISTEMA DI RIFERIMENTO GLOBALE IGS14. LE LINEE GRIGIE INDICANO LE BARRE D'ERRORE (1Σ). LA LINEA ROSSA, CENTRATA SULLO ZERO, MOSTRA COME LA BREVITÀ DELLA SERIE NON PERMETTA ANCORA DI CONSIDERARE ALCUN MODELLO FUNZIONALE PER QUESTO SITO. 56 FIGURA 32. SERIE TEMPORALE DI SPOSTAMENTO DELLA STAZIONE TLMA NEL SISTEMA DI RIFERIMENTO globale IGS14. Le linee grigie indicano le barre d'errore (1Σ) . La linea rossa RAPPRESENTA IL MODELLO, COME DEFINITO IN [1]. 57

77

FIGURA 33. SERIE TEMPORALE DI SPOSTAMENTO DELLA STAZIONE VIG3 NEL SISTEMA DI RIFERIMENTO	
globale IGS14. Le linee grigie indicano le barre d'errore (1Σ). La linea rossa	
RAPPRESENTA IL MODELLO, COME DEFINITO IN [1].	57
FIGURA 34. CAMPO DI VELOCITÀ ORIZZONTALE (FRECCE), NEL SISTEMA DI RIFERIMENTO GLOBALE IGS14	
(pannello A) e rispetto alla placca Eurasiatica (pannello B), e verticale (cerchi	
colorati). Le stazioni ENI con più di 2.5 anni di dati (MAE1 e VIG3) sono evidenziate	
CON LA SIGLA IN ROSSO. LE ELLISSI D'ERRORE PER LE COMPONENTI ORIZZONTALI SONO AL LIVELLO	
di confidenza del 95%. Si faccia attenzione alla diversa scala per le velocità	
ORIZZONTALI NEI DUE PANNELLI.	61
FIGURA 35. RETE DI INTERFEROGRAMMI OTTENUTA CON I CRITERI APPLICATI NEL PROCESSING INGV.	64
FIGURA 36. VELOCITÀ DI DEFORMAZIONE DEL TERRENO OTTENUTA TRAMITE ANALISI INSAR. LE MISURE	
ottenute sono proiettate lungo la LoS del sensore Sentinel-1. I quadrati bianchi	
rappresentano i pozzi all'interno della zona di concessione (poligono rosso). La	
STELLA NERA RAPPRESENTA IL PUNTO DI RIFERIMENTO DELLE STIME INSAR.	65
Figura 37. Mappe di velocità di deformazione InSAR stimate lungo la LoS. Il cerchio bianco	
evidenzia le aree in deformazione individuate nei pressi dei comuni di Montemurro (A),	
Corleto Perticara (B) e Stigliano (C), mentre le frecce indicano approssimativamente	
LA DIREZIONE DI SCIVOLAMENTO.	66
FIGURA 38. VISIONE 3D DELLA FRANA DI STIGLIANO.	67
FIGURA 39. SERIE TEMPORALI INSAR ESTRATTE DA 3 PUNTI NELLE AREE IN DEFORMAZIONE DI MONTEMURRO	
(A), Corleto Perticara (B) e Stigliano (C).	67
FIGURA 40. HOME PAGE DEL SITO CMS.INGV.IT	69
Figura 41. Mappa analitica del sito web del CMS. La lista dei contenuti è conforme a quanto	
ESPRESSAMENTE PREVISTO DAGLI ILG.	69
FIGURA 42. SCREENSHOT PAGINA WEB DEL CMS.	70
FIGURA 43. SCREENSHOT PAGINA WEB DEL CMS.	70

Elenco delle tabelle

TABELLA 1. CODICE E COORDINATE DELLE STAZIONI SISMICHE DELLA RETE SISMICA NAZIONALE (RSN)	
integrate nell'analisi dei dati del CMS come concordato con la Sala Operativa	
dell'ONT.	18
TABELLA 2. MODULI SC3.	25
TABELLA 3. ESTRATTO DA SEED MANUAL (2012).	28
TABELLA 4. CODICE E COORDINATE DELLE STAZIONI GPS INSTALLATE DA ENI, DATA DI INIZIO DELLE	
ACQUISIZIONI, INTERVALLO TEMPORALE ATTUALMENTE COPERTO DAI DATI E PERCENTUALE DI	
EPOCHE MANCANTI NELL'INTERVALLO DI TEMPO DI ACQUISIZIONE.	31
TABELLA 5. SISMICITÀ LOCALIZZATA IN VAL D'AGRI SECONDO IL BOLLETTINO ENI NEL PERIODO DAL	
01/10/2019 - 31/03/2020. Eventi con magnitudo ≥1.5 e con ipocentro all'interno	
del DI sono evidenziati con il colore del livello di allerta del sistema a semaforo;	
EVENTI CON EPICENTRO ALL'INTERNO DEL DE SONO EVIDENZIATI IN AZZURRO.	47
TABELLA 6. VELOCITÀ DI SPOSTAMENTO, E RELATIVE INCERTEZZE, DELLE STAZIONI MAE1 E VIG3 (IN	
mm/anno). In particolare VE, VN e Vup indicano le velocità nelle componenti est,	
NORD E VERTICALE, RISPETTIVAMENTE, NEL SISTEMA DI RIFERIMENTO IGS14 E S_VE, S_VN E	
S_VUP LE RELATIVE INCERTEZZE.	59
TABELLA 7. PARAMETRI DEL POLO DI ROTAZIONE DELLA PLACCA EURASIATICA NEL SISTEMA DI RIFERIMENTO	
<code>IGS14:</code> posizione del polo (latitudine e longitudine), velocità di rotazione $(arOmega)$ in	
NANORADIANTI/ANNO E RELATIVE INCERTEZZE (σ Lat, σ Lon, $\sigma \Omega$).	59